Automatic Detection of Nephrops Norvegicus Burrows from Underwater Imagery Using Deep Learning  被引量:2

在线阅读下载全文

作  者:Atif Naseer Enrique Nava Baro Sultan Daud Khan Yolanda Vila Jennifer Doyle 

机构地区:[1]ETSI Telecomunicación,Universidad deMálaga,Málaga,29071,Spain [2]Department of Computer Science,National University of Technology,Islamabad,44000,Pakistan [3]Instituto Espanol de Oceanografía,Centro Oceanográfico de Cádiz,Cádiz,39004,Spain [4]Marine Institute Rinville,Oranmore,Ireland

出  处:《Computers, Materials & Continua》2022年第3期5321-5344,共24页计算机、材料和连续体(英文)

基  金:Open Access Article Processing Charges has been funded by University of Malaga.

摘  要:The Norway lobster,Nephrops norvegicus,is one of the main commercial crustacean fisheries in Europe.The abundance of Nephrops norvegicus stocks is assessed based on identifying and counting the burrows where they live from underwater videos collected by camera systems mounted on sledges.The Spanish Oceanographic Institute(IEO)andMarine Institute Ireland(MIIreland)conducts annual underwater television surveys(UWTV)to estimate the total abundance of Nephrops within the specified area,with a coefficient of variation(CV)or relative standard error of less than 20%.Currently,the identification and counting of the Nephrops burrows are carried out manually by the marine experts.This is quite a time-consuming job.As a solution,we propose an automated system based on deep neural networks that automatically detects and counts the Nephrops burrows in video footage with high precision.The proposed system introduces a deep-learning-based automated way to identify and classify the Nephrops burrows.This research work uses the current state-of-the-art Faster RCNN models Inceptionv2 and MobileNetv2 for object detection and classification.We conduct experiments on two data sets,namely,the Smalls Nephrops survey(FU 22)and Cadiz Nephrops survey(FU 30),collected by Marine Institute Ireland and Spanish Oceanographic Institute,respectively.From the results,we observe that the Inception model achieved a higher precision and recall rate than theMobileNetmodel.The best mean Average Precision(mAP)recorded by the Inception model is 81.61%compared to MobileNet,which achieves the best mAP of 75.12%.

关 键 词:Faster RCNN computer vision nephrops norvegicus nephrops norvegicus stock assessment underwater videos classification 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象