检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Atif Naseer Enrique Nava Baro Sultan Daud Khan Yolanda Vila Jennifer Doyle
机构地区:[1]ETSI Telecomunicación,Universidad deMálaga,Málaga,29071,Spain [2]Department of Computer Science,National University of Technology,Islamabad,44000,Pakistan [3]Instituto Espanol de Oceanografía,Centro Oceanográfico de Cádiz,Cádiz,39004,Spain [4]Marine Institute Rinville,Oranmore,Ireland
出 处:《Computers, Materials & Continua》2022年第3期5321-5344,共24页计算机、材料和连续体(英文)
基 金:Open Access Article Processing Charges has been funded by University of Malaga.
摘 要:The Norway lobster,Nephrops norvegicus,is one of the main commercial crustacean fisheries in Europe.The abundance of Nephrops norvegicus stocks is assessed based on identifying and counting the burrows where they live from underwater videos collected by camera systems mounted on sledges.The Spanish Oceanographic Institute(IEO)andMarine Institute Ireland(MIIreland)conducts annual underwater television surveys(UWTV)to estimate the total abundance of Nephrops within the specified area,with a coefficient of variation(CV)or relative standard error of less than 20%.Currently,the identification and counting of the Nephrops burrows are carried out manually by the marine experts.This is quite a time-consuming job.As a solution,we propose an automated system based on deep neural networks that automatically detects and counts the Nephrops burrows in video footage with high precision.The proposed system introduces a deep-learning-based automated way to identify and classify the Nephrops burrows.This research work uses the current state-of-the-art Faster RCNN models Inceptionv2 and MobileNetv2 for object detection and classification.We conduct experiments on two data sets,namely,the Smalls Nephrops survey(FU 22)and Cadiz Nephrops survey(FU 30),collected by Marine Institute Ireland and Spanish Oceanographic Institute,respectively.From the results,we observe that the Inception model achieved a higher precision and recall rate than theMobileNetmodel.The best mean Average Precision(mAP)recorded by the Inception model is 81.61%compared to MobileNet,which achieves the best mAP of 75.12%.
关 键 词:Faster RCNN computer vision nephrops norvegicus nephrops norvegicus stock assessment underwater videos classification
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.20.207