A Transfer Learning-Based Approach to Detect Cerebral Microbleeds  被引量:2

在线阅读下载全文

作  者:Sitara Afzal Imran Ullah Khan Jong Weon Lee 

机构地区:[1]Mixed Reality and Interaction Lab,Department of Software,Sejong University,Seoul,143-747,Korea

出  处:《Computers, Materials & Continua》2022年第4期1903-1923,共21页计算机、材料和连续体(英文)

基  金:This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2021–2016–0–00312)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).

摘  要:Cerebral microbleeds are small chronic vascular diseases that occur because of irregularities in the cerebrum vessels.Individuals and elderly people with brain injury and dementia can have small microbleeds in their brains.A recent study has shown that cerebral microbleeds could be remarkably risky in terms of life and can be riskier for patients with dementia.In this study,we proposed an efficient approach to automatically identify microbleeds by reducing the false positives in openly available susceptibility-weighted imaging(SWI)data samples.The proposed structure comprises two different pretrained convolutional models with four stages.These stages include(i)skull removal and augmentation,(ii)making clusters of data samples using the k-mean classifier,(iii)reduction of false positives for efficient performance,and(iv)transfer-learning classification.The proposed technique was assessed using the SWI dataset available for 20 subjects.For our findings,we attained an accuracy of 97.26%with a 1.8%false-positive rate using data augmentation on the AlexNet transfer learning model and a 1.1%false-positive rate with 97.89%accuracy for the ResNet 50 model with data augmentation approaches.The results show that our models outperformed the existing approach for the detection of microbleeds.

关 键 词:MICROBLEEDS deep convolutional neural network ResNet50 AlexNet computer-vision 

分 类 号:R445[医药卫生—影像医学与核医学] TP391[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象