检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Liu-Yuan Zhou Hao Zha Jia-Ru Shi Jia-Qi Qiu Chuan-Jing Wang Yun-Sheng Han Huai-Bi Chen
机构地区:[1]Department of Engineering Physics,Tsinghua University,Beijing,100084,China [2]Key Laboratory of Particle and Radiation Imaging,Tsinghua University,Beijing,100084,China
出 处:《Nuclear Science and Techniques》2022年第7期25-35,共11页核技术(英文)
基 金:supported by the National Natural Science Foundation of China(No.11922504).
摘 要:As modern accelerator technologies advance toward more compact sizes,conventional invasive diagnostic methods of cavity detuning introduce negligible interference in measurements and run the risk of harming structural surfaces.To overcome these difficulties,this study developed a non-invasive diagnostic method using knowledge of scattering parameters with a convolutional neural network and the interior point method.Meticulous construction and training of the neural network led to remarkable results on three typical acceleration structures:a 13-cell S-band standing-wave linac,a 12-cell X-band traveling-wave linac,and a 3-cell X-band RF gun.The trained networks significantly reduced the burden of the tuning process,freed researchers from tedious tuning tasks,and provided a new perspective for the tuning of side-coupling,semi-enclosed,and total-enclosed structures.
关 键 词:Cavity detuning Convolutional neural network Equivalent circuit
分 类 号:TL50[核科学技术—核技术及应用] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229