脑肿瘤分割算法研究  被引量:2

Research on Brain Glioma Segmentation Algorithm

在线阅读下载全文

作  者:张士强 石磊 程晓东[1] Zhang Shiqang;Shi Lei;Cheng Xiaodong(College of Electronic Information Engineering,Hohhot 010021,China)

机构地区:[1]内蒙古大学电子信息工程学院,呼和浩特010021

出  处:《中国生物医学工程学报》2022年第3期290-300,共11页Chinese Journal of Biomedical Engineering

摘  要:由于医学成像技术的复杂性和胶质瘤表面高度的异质性,对人脑神经胶质瘤的图像分割是医学影像分析中最具挑战性的任务之一。本研究对UNet++医学图像分割网络进行了改进,改进后的网络能够融合全尺度下的粗粒度语义和细粒度语义信息。在公开的BraTS脑肿瘤分割数据集中的335例图像上进行分割实验,采用2D与3D对比分割实验综合评价改进后网络的分割性能,将分割结果与UNet, UNet++,UNet3+医学图像分割网络的结果进行对比。在Dice相似度系数(DSC),95%Hausdorff表面距离(HSD95),Sensitivity, PPV等4个指标基础上,2D对比分割实现的指标均值分别为:83.70%,1.7,88.40%,84.96%;3D对比分割实验的指标均值为:90.79%,0.242,91.23%,91.06%。实验结果表明,改进的算法使神经胶质瘤的分割结果与金标准在区域上有更多的重叠,可以更好的完成脑胶质瘤的分割。在临床应用中,可望帮助神经外科医生高效地分离脑肿瘤与人脑周围组织,从而实现快速的计算机诊疗。Due to the complexity of medical imaging and the high heterogeneity of the surface of gliomas, image segmentation of human brain gliomas is one of the most challenging tasks in medical image analysis. This paper aimed to improve the UNet++ medical image segmentation network, the improved network can fuse coarse-grained semantics and fine-grained semantics at full scale. Experiments were performed on 335 images obtained from the public BraTS brain tumor segmentation data set, using 2 D and 3 D comparative segmentation experiments to comprehensively evaluate the segmentation performance of the improved network and compare the segmentation results with the results of UNet, UNet++, and UNet3+ medical image segmentation networks. Among the four indicators of Dice similarity coefficient(DSC), 95% Hausdorff surface distance(HSD95), sensitivity, and positive predictive value(PPV), 2 D contrast segmentation achieved the mean values of the indicators of 83.70%, 1.7, 88.40%, 84.96% respectively;the mean values of the 3 D contrast segmentation reached 90.79%, 0.242, 91.23%, 91.06% respectively. Compared with the segmentation result indicators of the other three networks, in the 2 D comparison experiment, DSC increased by 1.82% on average, HSD95 decreased by 0.35 on average, sensitivity increased by 2.13% on average, and PPV increased by 0.80% on average;in the 3 D comparison experiment, DSC increased by 2.78% on average, HSD95 decreased by 0.076 on average, Sensitivity increased by 3.81% on average, and PPV increased by 0.68% on average. It was shown that the proposed algorithm made the segmentation result of glioma and the gold standard overlap more in the region, and completed the segmentation of glioma better. It is expected to help neurosurgeons to more precisely separate brain tumors and tissues around the brain and achieve rapid computer diagnosis and treatment.

关 键 词:医学图像分割 全尺度特征融合 跳跃连接 神经胶质瘤 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象