检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Altyeb Altaher Taha Sharaf Jameel Malebary
出 处:《Computers, Materials & Continua》2022年第6期6089-6105,共17页计算机、材料和连续体(英文)
基 金:The authors extend their appreciation to the Deputyship for Research&Inno-vation,Ministry of Education in Saudi Arabia“for funding this research work through the project number IFPHI-193-830-2020”and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
摘 要:Diabetes is a chronic health condition that impairs the body’s ability to convert food to energy,recognized by persistently high levels of blood glucose.Undiagnosed diabetes can cause many complications,including retinopathy,nephropathy,neuropathy,and other vascular disorders.Machine learning methods can be very useful for disease identification,prediction,and treatment.This paper proposes a new ensemble learning approach for type 2 diabetes prediction based on a hybrid meta-classifier of fuzzy clustering and logistic regression.The proposed approach consists of two levels.First,a baselearner comprising six machine learning algorithms is utilized for predicting diabetes.Second,a hybrid meta-learner that combines fuzzy clustering and logistic regression is employed to appropriately integrate predictions from the base-learners and provide an accurate prediction of diabetes.The hybrid metalearner employs the Fuzzy C-means Clustering(FCM)algorithm to generate highly significant clusters of predictions from base-learners.The predictions of base-learners and their fuzzy clusters are then employed as inputs to the Logistic Regression(LR)algorithm,which generates the final diabetes prediction result.Experiments were conducted using two publicly available datasets,the Pima Indians Diabetes Database(PIDD)and the Schorling Diabetes Dataset(SDD)to demonstrate the efficacy of the proposed method for predicting diabetes.When compared with other models,the proposed approach outperformed them and obtained the highest prediction accuracies of 99.00%and 95.20%using the PIDD and SDD datasets,respectively.
关 键 词:Ensemble learning fuzzy clustering diabetes prediction machine learning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31