Cognitive Computing-Based Mammographic Image Classification on an Internet of Medical  

在线阅读下载全文

作  者:Romany F.Mansour Maha M.Althobaiti 

机构地区:[1]Department of Mathematics,Faculty of Science,New Valley University,El-Kharga,72511,Egypt [2]Department of Computer Science,College of Computers and Information Technology,Taif University,Taif,21944,Saudi Arabia

出  处:《Computers, Materials & Continua》2022年第8期3945-3959,共15页计算机、材料和连续体(英文)

基  金:We deeply acknowledge Taif University for supporting this study through Taif University Researchers Supporting Project Number(TURSP-2020/328),Taif University,Taif,Saudi Arabia.

摘  要:Recently,the Internet of Medical Things(IoMT)has become a research hotspot due to its various applicability in medical field.However,the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment,generating a massive quantity of healthcare data.In such cases,cognitive computing can be employed that uses many intelligent technologies-machine learning(ML),deep learning(DL),artificial intelligence(AI),natural language processing(NLP)and others-to comprehend data expansively.Furthermore,breast cancer(BC)has been found to be a major cause of mortality among ladies globally.Earlier detection and classification of BC using digital mammograms can decrease the mortality rate.This paper presents a novel deep learning-enabled multi-objective mayfly optimization algorithm(DLMOMFO)for BC diagnosis and classification in the IoMT environment.The goal of this paper is to integrate deep learning(DL)and cognitive computing-based techniques for e-healthcare applications as a part of IoMT technology to detect and classify BC.The proposed DL-MOMFO algorithm involved Adaptive Weighted Mean Filter(AWMF)-based noise removal and contrast-limited adaptive histogram equalisation(CLAHE)-based contrast improvement techniques to improve the quality of the digital mammograms.In addition,a U-Net architecture-based segmentation method was utilised to detect diseased regions in the mammograms.Moreover,a SqueezeNet-based feature extraction and a fuzzy support vector machine(FSVM)classifier were used in the presented technique.To enhance the diagnostic performance of the presented method,the MOMFO algorithm was used to effectively tune the parameters of the SqueezeNet and FSVM techniques.The DL-MOMFO technique was tested on the MIAS database,and the experimental outcomes revealed that the DL-MOMFO technique outperformed existing techniques.

关 键 词:Cognitive computing breast cancer digital mammograms image processing internet of medical things smart healthcare 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象