Unstructured Oncological Image Cluster Identification Using Improved Unsupervised Clustering Techniques  

在线阅读下载全文

作  者:S.Sreedhar Kumar Syed Thouheed Ahmed Qin Xin S.Sandeep M.Madheswaran Syed Muzamil Basha 

机构地区:[1]Dr.T.Thimmaiah Institute of Technology,VTU,KGF,Karnataka,India [2]School of Computing&Information Technology,REVA University,Bengaluru,India [3]Faculty of Science and Technology,University of the Faroe Islands,Faroe Islands,Denmark [4]K S School of Engineering,Bengaluru,India [5]Muthayammal Engineering College,Rasipuram,Tamil Nadu,India

出  处:《Computers, Materials & Continua》2022年第7期281-299,共19页计算机、材料和连续体(英文)

基  金:This work is supported by Faculty of Science and Technology,University of the Faroe Islands,Faroe Islands,Denmark and REVA University,Bengaluru.

摘  要:This paper presents,a new approach of Medical Image Pixels Clustering(MIPC),aims to trace the dissimilar patterns over the Magnetic Resonance(MR)image through the process of automatically identify the appropriate number of distinct clusters based on different improved unsupervised clustering schemes for enrichment,pattern predication and deeper investigation.The proposed MIPC consists of two stages:clustering and validation.In the clustering stage,the MIPC automatically identifies the distinct number of dissimilar clusters over the gray scale MR image based on three different improved unsupervised clustering schemes likely improved Limited Agglomerative Clustering(iLIAC),Dynamic Automatic Agglomerative Clustering(DAAC)and Optimum N-Means(ONM).In the second stage,the performance of MIPC approach is estimated by measuring Intra intimacy and Intra contrast of each individual cluster in the result of MR image based on proposed validation method namely Shreekum Intra Cluster Measure(SICM).Experimental results showthat the MIPC approach is better suited for automatic identification of highly relative dissimilar clusters over the MR cancer images with higher Intra closeness and lower Intra contrast based on improved unsupervised clustering schemes.

关 键 词:Magnetic resonance image unsupervised clustering scheme intra intimacy intra contrast ILIAC shreekum intra cluster measure medical image clustering 

分 类 号:O14[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象