HIGH ACCURACY ARITHMETIC AVERAGE TYPE DISCRETIZATION FOR THE SOLUTION OF TWO-SPACE DIMENSIONAL NONLINEAR WAVE EQUATIONS  

在线阅读下载全文

作  者:R.K.MOHANTY VENU GOPAL 

机构地区:[1]Department of Mathematics University of Delhi,Delhi-110007,India

出  处:《International Journal of Modeling, Simulation, and Scientific Computing》2012年第2期1-18,共18页建模、仿真和科学计算国际期刊(英文)

基  金:“The University of Delhi”under research grant No.Dean(R)/R&D/2010/1311.

摘  要:In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form utt=A(x,y,t)uxx+B(x,y,t)uyy+g(x,y,t,u,ux,uy,ut),0<x,y<1,t>0 subject to appropriate initial and Dirichlet boundary conditions.We use only five evaluations of the function g and do not require any fictitious points to discretize the differential equation.The proposed method is directly applicable to wave equation in polar coordinates and when applied to a linear telegraphic hyperbolic equation is shown to be unconditionally stable.Numerical results are provided to illustrate the usefulness of the proposed method.

关 键 词:Nonlinear hyperbolic equation variable coefficients arithmetic average type approximation wave equation in polar coordinates van der Pol equation telegraphic equation maximum absolute errors. 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象