检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bo Zhang Keqing Li Siqi Zhang Yafei Hu Bin Han
机构地区:[1]School of Civil and Re source Engineering University of Science and Technology Beijing,Beijing,100083,China [2]Key Laboratory of Ministry of Educ ation of China for Eficient Mining and Safety of Metal Mines,University of Science and Technology Beijing,Beijing 100083,China
出 处:《Journal of Renewable Materials》2022年第12期3539-3558,共20页可再生材料杂志(英文)
基 金:This study was supported by the National Key Research and Development Program of China(2018YFC 1900603,2018YFC0604604).
摘 要:Cemented paste backill(CPB)is a susta inable mining technology that is widely used in mines and helps to improve the mine environment.To investigate the relationship between aggregate grading and different affecting factors and the uniaxial compressive strength(UCS)of the cemented paste backill(CPB),Talbol gradation theory and neural networks is used to evaluate aggregate gradation to determine the optimum aggregate ratio.The mixed aggregate ratio with the least amount of cement(waste stone content river sand content=7:3)is obtained by using Talbol grading theory and pile compactness function and combined with experiments.In addition,the response surface method is used to design strength speaific ratio experiments.The UCS prediction model which ues the ISTM and considers the aggregates gradation have high accuracy.The root mean square error(RMSE)of the prediction results is 0.0914,the coefficient of determination(R^(2))is 0.9973 and the variance account for(VAF)is 99.73.Compared with back propagation neural network(BP-ANN),extreme lea ming machine(ELM)and madal basis function neural network(RBF ANN),LSTM can efectively characterize the nonlinear relationship between UCS and individual affecting factors and predict UCS with high accuracy.The sensitivity analysis of different affecting factors on UCS shows that all 4 factors have significant effect on UCS and sensitivity is in the following ranking:cement content(0.9264)>slurry concentration(0.9179)>aggregate gradation(waste rodk content)(0.9031)>curing time(09031).
关 键 词:Backill aggregate gradation machine learning uniaxial compressive strength cemented paste backill
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186