Tensile and Stress Analysis of Hybrid Composite Prosthetic Socket Reinforced with Natural Fibers  被引量:1

在线阅读下载全文

作  者:Noor K.Faheed Qahtan A.Hamad Jawad K.Oleiwi 

机构地区:[1]Materials Engineering Department,University of Technology,Baghdad,Iraq

出  处:《Journal of Renewable Materials》2022年第7期1989-2013,共25页可再生材料杂志(英文)

摘  要:Natural fibers and their composites are the evolving movements in material science,and with that,the utmost use of plant-based fibers has become the focus of this research.Sisal and cotton natural fibers were used to construct a prosthetic socket as an attempt to substitute material currently available in the manufacturing of sockets.The vacuum bagging technique was adopted to produce a below-knee socket.The influence of different fiber layering sequences on the volumetric and mechanical characteristics was estimated experimentally and numerically.Mechanical tensile tests were used to assess laminated specimens,such as tensile strength,young modulus,and elongation percentage.The number and type of reinforcing layers had an effect on mechanical properties,and the best composite specimens were three layers of sisal with two layers of carbon fiber,with tensile strength and modulus of elasticity reaching(261–4760)MPa,respectively.The finite element method(ANSYS-16.1)was used to anatomize by seeing the contours distribution of safety factor,equivalent Von Mises stress,equivalent Von Mises strain,and total deformation.This procedure was executed by building ten models for the socket,which served as three-dimensional structural composite materials.The results of the present study advocate that the arrangement of natural and synthetic reinforcements allow the preparation of bio-composites with enhanced performance.This work revealed the assets of sisal and cotton fiber hybrid reinforced PMMA resin composites(hybridized at diverse volume percentages and lamination layup),which have not been tried up to now.

关 键 词:Natural fiber TENSILE COTTON SISAL PROSTHETIC SOCKET carbon glass fibers 

分 类 号:TB33[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象