检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王冉 石如玉 胡升涵 鲁文波 胡雄[1] WANG Ran;SHI Ruyu;HU Shenghan;LU Wenbo;HU Xiong(School of Logistics Engineering,Shanghai Maritime University,Shanghai 201306,China;Shanghai Branch,Beijing Hi-key Plus Technology Co.,Ltd.,Shanghai 201100,China)
机构地区:[1]上海海事大学物流工程学院,上海201306 [2]北京海基嘉盛科技有限公司上海分公司,上海201100
出 处:《振动与冲击》2022年第16期224-231,共8页Journal of Vibration and Shock
基 金:国家自然科学基金(51505277)。
摘 要:常用的振动诊断技术一般采用接触式测量,在测量受限的场合具有一定的局限性。该研究提出一种具有非接触测量优势的基于声成像与卷积神经网络的滚动轴承声学故障诊断方法。首先,利用传声器阵列获取滚动轴承辐射的空间声场;然后,用波叠加法进行声成像,重建后的声像能够描述声场的空间分布信息;最后,建立卷积神经网络(convolutional neural network,CNN),使用不同轴承运行状态下的声像样本对CNN模型进行训练用于故障诊断。同时,针对深度学习模型的诊断结果缺乏可解释性的问题,采用梯度加权类激活图(gradient-weighted class activation map,Grad-CAM)算法对卷积神经网络在基于声像的轴承故障诊断中的可解释性进行了研究。轴承试验台的声阵列数据验证了所提方法的有效性及优越性。Contact measurementis generally used in the common vibration diagnosis techniques,which has certain limitations in situations where measurement is limited.In this paper,a rolling bearing acoustic fault diagnosis method based on acoustic imaging and convolutional neural network with the advantage of non-contact measurement was proposed.First,the spatial acoustic field radiated by the rolling bearing was obtained by using microphone array;then,acoustic imaging was performed by wave superposition method,and the reconstructed acoustic image can describe the spatial distribution information of the acoustic field;finally,a convolutional neural network(CNN)was established,which was trained for fault diagnosis using the acoustic image samples of different bearing operating states.Meanwhile,to address the problem of lack of interpretability of diagnostic results of deep learning models,this paper investigates the interpretability of convolutional neural networks in acoustic image-based bearing fault diagnosis using the gradient-weighted class activation map(Grad-CAM)algorithm.The acoustic array data from the bearing experimental bench verifies the effectiveness and superiority of the proposed method.
关 键 词:声成像 故障诊断 卷积神经网络(CNN) 波叠加法 梯度加权类激活图(Grad-CAM)
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.163.198