检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴杭彬 王旭飞 刘春 WU Hangbin;WANG Xufei;LIU Chun(College of Surveying and Geo-Informatics,Tongji University,Shanghai 200092,China)
机构地区:[1]同济大学测绘与地理信息学院,上海200092
出 处:《同济大学学报(自然科学版)》2022年第7期947-954,共8页Journal of Tongji University:Natural Science
基 金:国家自然科学基金(42130106)。
摘 要:提出了一种基于随机RANSAC模型的树木胸径自动提取算法。首先,采用布料模拟滤波(CSF)算法对林地点云数据进行滤波,获取树木、地面数据与数字地面模型(DEM)并提取树木胸径处点云,然后进行欧式距离聚类,最后基于随机random sample consensus(RANSAC)模型拟合树木模型,实现自动化的树木胸径提取。使用上海市青浦区某区域两林区样地的地面激光点云数据对该算法进行验证,与实际人工测量树木胸径的平均偏差分别为0.79cm和0.52cm。实验对比结果表明,该算法在精度与时间性能上均优于基于Hough变换的算法与基于最小二乘的算法。This paper presents a tree diameter at breast height(DBH)estimation algorithm using terrestrial laser scanning(TLS)based on the randomized random sample consensus(RANSAC)model.First,the forest cloud data were filtered by the cloth simulation filtering(CSF)algorithm.Digital elevation model(DEM)and the point cloud at the DBH of the tree were extracted.Then,Euclidean distance clustering was performed.Finally,the tree model was fitted on the basis of the randomized RANSAC model.The algorithm was verified on laser point cloud data from two sample plots in Qingpu District,Shanghai.The average biases from the actual diameter of trees were 0.79 cm and 0.52 cm,respectively.Experiment results show that the algorithm is better than those based on Hough transform or the least-squares in terms of the accuracy and running time.
关 键 词:地基激光雷达 胸径 随机RANSAC模型
分 类 号:TN958.98[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188