数据挖掘技术在洪水预报实时校正中的应用  被引量:11

Application of data mining techniques in real-time correction of flood forecasts

在线阅读下载全文

作  者:陈鑫[1,2] 刘艳丽 张建云[2,3,4] 曹孟 贺瑞敏[2,3,4] 金君良 王国庆 鲍振鑫[2,3,4] CHEN Xin;LIU Yanli;ZHANG Jianyun;CAO Meng;HE Ruimin;JIN Junliang;WANG Guoqing;BAO Zhenxin(School of Civil Engineering,Tianjin University,Tianjin 300072,China;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,Nanjing 210098,China;Research Center for Climate Change of Ministry of Water Resources,Nanjing 210029,China;Yangtze Institute for Conservation&Development,Nanjing 210098,China)

机构地区:[1]天津大学建筑工程学院,天津300072 [2]南京水利科学研究院水文水资源与水利工程科学国家重点实验室,南京210098 [3]水利部应对气候变化研究中心,南京210029 [4]长江保护与绿色发展研究院,南京210098

出  处:《水力发电学报》2022年第8期54-62,共9页Journal of Hydroelectric Engineering

基  金:国家重点研发计划资助项目(2018YFC1508104);国家自然科学基金资助项目(52079079)。

摘  要:实时校正作为提升洪水预报精度的最后一道屏障,是洪水预报的重要组成部分。针对洪水过程与洪水要素校正效果较差的问题,以横江屯溪以上流域为例,在对流域历史洪水数据的降雨径流序列与洪水特征值遴选的基础上,构建了暴雨洪水特征库,提出了一种结合卡尔曼滤波和K最邻近结点算法的联合实时校正方法。结果表明:相较于模型未校正及单一校正方法,联合实时校正方法在减少洪水预报过程中的洪峰预报误差、洪量预报误差及峰现时间误差上更为有效,预见期在6 h及以下时仍可以保持较好的稳定性与准确性。此方法对于提高中小河流洪水预报精度、有效预警和防灾减灾等方面都具有重要作用,同时对研究区域洪水特征具有一定参考价值。Real-time correction,as the last barrier to improving forecast accuracy,is an important part of flood forecasting.To address the problem of poor correction of flood process and flood elements,a joint real-time correction method combining a Kalman filter and a K-nearest neighbor algorithm is developed through selecting the rainfall runoff series of the basin and the eigenvalues of its historical flood data and constructing a storm flood feature database,in combination with a case study of the watershed above Tunxi of Hengjiang River.The results show that relative to the uncorrected model or single correction method,this new method is more effective in reducing forecast errors of flood peak,volume,and flood peak time,while it can maintain stability and accuracy for a forecast period of six hours or shorter.It could play an important role in improving flood forecast accuracy,effective early warning,and disaster prevention and mitigation for small-and medium-sized rivers or similar regional flood forecasting.

关 键 词:洪水预报 实时校正 K最邻近算法 集合卡尔曼滤波 暴雨洪水数据库 屯溪流域 

分 类 号:P338[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象