Research on the Properties of Periodic Solutions of Beverton⁃Holt Equation  

在线阅读下载全文

作  者:Yingchao Hao Cuiping Li 

机构地区:[1]School of Mathematical Sciences,Beihang University,Beijing 100083,China

出  处:《Journal of Harbin Institute of Technology(New Series)》2022年第4期26-31,共6页哈尔滨工业大学学报(英文版)

摘  要:Fractional linear maps have played a key role in mathematical biology,population dynamics,and other research areas.In this paper,a special kind of Ricatti map is studied in detail in order to determine the asymptotical behaviors of fixed points and periodic solutions.Making use of composition operation of maps and the methods of dynamical systems and qualitative theory,fixed points or periodic orbits are expressed precisely,average value of periodic solution is estimated concretely,and several different bounds are obtained for periodic solutions of the Beverton⁃Holt map when both intrinsic growth rate and carrying capacity change periodically.In addition,some sufficient conditions are given about the attenuation of periodic solution of the non⁃autonomous Beverton⁃Holt equation.Compared with present works in literature,our results about bounds of periodic solutions are more precise,and our proofs about the attenuation of periodic solution are more concise.

关 键 词:Beverton⁃Holt equation Cushing⁃Henson conjecture ATTENUATION p⁃cycle 

分 类 号:O175.7[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象