检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦玉霞 Qin Yuxia(Technological Vocational College of Dezhou,Shandong,Yucheng,251200)
出 处:《现代科学仪器》2022年第4期244-248,共5页Modern Scientific Instruments
摘 要:面向齿轮系统20个常见故障,依据采集的齿轮箱震动噪音单一序列数据,采用基于超限学习机的神经网络算法进行深度挖掘,最终形成该研究设计的故障诊断预警体系。与文献中相关系统给出的实测结果平均值相比,该系统的预警时间延迟显著缩短,预警敏感度、特异度、综合准确率显著提升。作者认为,虽然该系统只针对结构简单的三轴齿轮变速箱开展了仿真研究,但该研究的设计理念适用于大部分复杂齿轮系统。For 20 common faults of gear system,according to the collected single sequence data of gearbox vibration and noise,the neural network algorithm based on overrun learning machine is used for in-depth mining,and finally the fault diagnosis and early warning system designed in this research is formed.Compared with the average of the measured results given by the relevant systems in the literature,the early warning time delay of the system is significantly shortened,and the early warning sensitivity,specificity and comprehensive accuracy are significantly improved.The author believes that although the simulation research of the system is only carried out for the three-axis gear box with simple structure,the design concept of the research is suitable for most complex gear systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.149.213