检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周瑛 刘仁芬 李娜 ZHOU Ying;LIU Ren-fen;LI Na(Sifang College,Shijiazhuang Tiedao University,Shijiazhuang Hebei 051132,China)
机构地区:[1]石家庄铁道大学四方学院,河北石家庄051132
出 处:《计算机仿真》2022年第7期502-506,共5页Computer Simulation
摘 要:由于目前已有算法没有对网络主题语义流行度进行计算,构建流行度序列,导致分类结果不理想,运行时间增加。提出一种基于特征序列的模块化网络主题语义分类算法,通过Ochiia系数方法将高频关键词同时出现的次数转换为网络主题语义相似性。将语义相似性较强的网络主题聚集到一个簇中,形成主题簇。根据特征序列获取网络主题簇的平均热度和描述词,以此为依据构建流行度序列。采用特征序列对全部序列进行分类,实现模块化网络主题语义分类。仿真结果表明,所提算法能够快速准确完成模块化网络主题语义分类。Because the existing algorithms do not calculate the semantic popularity of network topics and construct the popularity sequence,the classification results are not ideal and the running time is increased.Therefore,a modular classification algorithm for network topic semantics based on feature sequence was proposed.The Ochiia coefficient method was used to convert the number of simultaneous occurrences of high-frequency keywords into semantic similarity.The topics with strong semantic similarity were gathered into a cluster to form a topic cluster.According to the feature sequence,the average clout and description words of network topic clusters were obtained.On this basis,the popularity sequence was constructed.Finally,the feature sequence was adopted to classify all sequences.Thus,the modular classification of network topic semantics was achieved.Simulation results show that the proposed algorithm can quickly and accurately complete the semantic classification of modular network topics.
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249