检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王东 李青[1] 张志刚[1] 王卓昊 Wang Dong;Li Qing;Zhang Zhigang;Wang Zhuohao(Institute of Scientific and Technical Information of China,Beijing 100038)
出 处:《情报学报》2022年第8期812-821,共10页Journal of the China Society for Scientific and Technical Information
摘 要:在大数据时代,科研人员的各类信息往往分散在多个“数据孤岛”上,导致信息的利用程度不高。因此,本文将用户画像技术引入科研管理中,通过对分散的数据进行整合和挖掘,提出科研实体抽取模型以及科研属性标签抽取模型,进而构建出科研人员特有的画像,有助于全面、直观地了解科研人员,在提高科研管理效率和水平、优化科研人员评价机制等方面具有重要意义。In the era of big data,all kinds of information on researchers are often scattered in several so-called isolated da‐ta islands,leading to the low utilization of information.Therefore,this study introduces user profile technology into re‐search management by integrating and mining the scattered data and proposing research entity extraction and research attri‐bute tag extraction models to build a unique profile of research personnel.Such a profile helps in understanding research personnel comprehensively and intuitively and is important for improving efficiency and the level of research manage‐ment,as well as optimizing the evaluation mechanism of research personnel.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15