检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:项融融 李博[1] 赵桥 Xiang Rongrong;Li Bo;Zhao Qiao(Key Laboratory of Instrument Science and Dynamic Testing,Ministry of Education,North University of China,Taiyuan 030051,China)
机构地区:[1]中北大学仪器科学与动态测试教育部重点实验室,太原030051
出 处:《国外电子测量技术》2022年第7期39-44,共6页Foreign Electronic Measurement Technology
基 金:国家自然科学基金(61471325)、国家自然科学基金青年科学基金(52006114)项目资助。
摘 要:在新冠疫情的影响下,佩戴口罩成为人们日常必备的防护措施。为了更好地实现智能化管理,针对公共场合密集人群佩戴口罩是否正确检测任务中的过小目标检测和遮挡问题,提出了一种基于改进YOLOv5s的实时检测算法,通过引入自注意力机制,从而提高模型的显著特征,进而优化算法精度;改变Neck层的卷积结构,采用基于双尺度的特征融合目标检测技术,实现了更好地特征提取。通过对改进后的YOLOv5s算法进行试验,证明了该方法模型小、检测速度快,并且平均识别精度均值比原来的方法提高了4.4%,更好地解决了复杂背景下、目标检测任务中过小目标的检测和遮挡问题。Under the influence of Covid-19,wearing masks has become a daily necessary protection measure for people.In order to better realize the intelligent management,in view of the public crowd wearing masks is correct detection of small target detection and occlusion problem,this paper proposes a real-time detection algorithm based on improved YOLOv5 s,by introducing the concentration mechanism,so as to improve the characteristic of the model,and optimized algorithm accuracy;The convolution structure of neck layer is changed,and the feature fusion object detection based on double scale is adopted to achieve better feature extraction.Through experiments on the improved YOLOv5 s algorithm,it is proved that the proposed method has small model,fast detection speed and the average recognition accuracy is 4.4%higher than before,which can better solve the problem of detection and occlusion of too small targets in complex background.
关 键 词:YOLOv5s 双尺度特征融合 口罩佩戴检测 自注意力机制
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175