检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丽艳[1] 李洪 陈树彬[1] 李忠镝 阮苠秩 薛天锋[1] 钱敏[1] 凡思军[1] ZHANG Liyan;LI Hong;CHEN Shubin;LI Zhongdi;RUAN Minzhi;XUE Tianfeng;QIAN Min;FAN Sijun(Key Laboratory of Materials for High Power Laser,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;Nippon Electric Glass,North Carolina28150,USA;China Nuclear Power Engineering Co.,Ltd,Beijing 100840 China)
机构地区:[1]中国科学院上海光学精密机械研究所强激光材料重点实验室,上海201800 [2]日本电气硝子株式会社(NEG)美国分公司,美国北卡罗来纳28150 [3]中国核电工程有限公司,北京100840
出 处:《硅酸盐学报》2022年第8期2338-2350,共13页Journal of The Chinese Ceramic Society
基 金:两步法冷坩埚玻璃固化工程样机研制及验证(FKY1683ZH G001SSJS-B01-001)。
摘 要:介绍了加和法、相图法、Priven法、拓扑束缚理论、分子动力学模拟、机器学习及数理统计模拟等7种玻璃成分性质模拟方法,总结了各模拟方法的主要理论依据、模拟过程及应用现状。加和法可进行多种玻璃物理性质的预测,相图法在二、三、四元硅酸盐、硼酸盐及硼硅酸盐玻璃体系上的运用较为成熟,Priven法结合了玻璃结构、热力学方程及计算机模拟,拓扑束缚理论目前应用于氧化物和硫化物体系个别性质的模拟,分子动力学模拟亦应用于多种玻璃体系中的分子结构分析和相关性质预测,机器学习能充分利用文献中提供的大量数据来模拟复杂玻璃性质。目前数理统计模拟法已用在建立复杂玻璃体系中的成分(C)–结构(S)–性质(P)的相关数学模型,包括硅酸盐,硼硅酸盐和磷酸盐玻璃。较传统的C–P统计模拟方法,C–S–P统计模拟法能对复杂玻璃体系提供更精准的性质评估,有助于新型玻璃开发。Seven methods of modeling glass properties were briefly reviewed,i.e.,covering additive method,phase diagram method,Priven method,topological theory,molecular dynamics simulation,machine learning,and mathematical statistical modeling(composition-property,structure-property,and composition-structure-property).The principle,theoretical basis,procedure of each method and their application were highlighted.The additive method demonstrates its application modeling multiple glass properties.The phase diagram approach is suitable for binary,ternary and quaternary systems of silicate,borate and borosilicate glass systems.The Priven method combines glass structure,thermodynamic equations and computer simulation;topological theory is used to simulate several properties of simple oxide and sulfide glass.The molecular dynamics simulation provides insight of molecular structures of glass of various compositions.The machine learning method is utilized based on a large database from the literature to predict properties of complex glass systems.The statistical modeling methodology is applied to bridge mathematical interrelationships of composition(C)–structure(S)–property(P)of multicomponent systems of silicate,borosilicate,and phosphate glasses.The C–S–P statistical modeling approach shows the improvement in accuracy and precision rather than the conventional C–P statistical modeling in the design of new glasses.
关 键 词:加和法 相图法 Priven法 拓扑束缚理论 分子动力学模拟 机器学习 数理统计模拟
分 类 号:TL941.11[核科学技术—辐射防护及环境保护]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.27.229