检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李心雨 范辉[1,2] 刘惊雷 LI Xin-yu;FAN Hui;LIU Jing-lei(School of Computer Science and Technology,Shandong Technology and Business University,Yantai 264005,Shandong,China;Co-innovation Center of Shandong Colleges and Universities Future Intelligent Computing,Yantai 264005,Shandong,China;School of Computer and Control Engineering,Yantai University,Yantai 264005,Shandong,China)
机构地区:[1]山东工商学院计算机科学与技术学院,山东烟台264005 [2]山东省高等学校未来智能计算协同创新中心,山东烟台264005 [3]烟台大学计算机与控制工程学院,山东烟台264005
出 处:《山东大学学报(理学版)》2022年第8期21-38,共18页Journal of Shandong University(Natural Science)
基 金:国家自然科学基金资助项目(62002200,61772319);山东省自然科学基金资助项目(ZR2020QF012)。
摘 要:聚类是数据挖掘和机器学习领域的重要研究内容,一般会先基于数据样本构建相似图,再基于相似图将样本划分到相应的类中。但是真实的数据经常被损坏,导致学习的相似图不准确,从而直接影响聚类结果。为解决这些问题,提出一种面向鲁棒聚类的自适应图调节和低秩矩阵分解的方法,该方法的核心思想是:将原始数据X分解为纯净数据D和噪声数据S,再基于纯净数据构造拉普拉斯矩阵并进行自适应图调节。随后,给出一个联合学习框架,将数据分离、自适应图正则、噪声消除和低秩矩阵分解集成到一个目标函数中。利用增广拉格朗日乘子法分别更新变量。最后,在理论上证明算法的收敛性并进行实验。实验结果表明所提出的方法与现有一些方法相比有一定优越性。Clustering is an important research content in the field of data mining and machine learning.Generally,similarity graphs are constructed based on data samples,and then the samples are divided into corresponding classes based on the similarity graphs.However,the real data is often damaged,resulting in inaccurate similarity graphs,which directly affects the clustering results.In order to solve these problems,a robust clustering-oriented adaptive graph adjustment and low-rank matrix decomposition method is proposed.The core idea of the method is to decompose the original data X into pure data D and noisy data S,then construct a Laplacian matrix based on pure data and perform adaptive graph adjustment.Subsequently,a joint learning framework is given,which integrates data separation,adaptive graph regularization,noise removal and low-rank matrix decomposition into an objective function.Use augmented Lagrangian multiplier method to update variables separately.Finally,the paper theoretically proves the convergence of the algorithm and conduct experiments.The experimental results show that the proposed method has certain advantages compared with some existing methods.
关 键 词:鲁棒聚类 L_(2 1)范数 低秩矩阵分解 自适应图调节 增广拉格朗日乘子法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3