检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邢雨青 孔芳[1] XING Yuqing;KONG Fang(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)
机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215006
出 处:《中文信息学报》2022年第7期42-49,共8页Journal of Chinese Information Processing
摘 要:篇章关系识别是篇章分析的核心组成部分。汉语中,缺少显式连接词的隐式篇章关系占比很高,篇章关系识别更具挑战性。该文给出了一个基于多层局部推理的汉语篇章关系及主次联合识别方法。该方法借助双向LSTM和多头自注意力机制进行篇章关系对应论元的表征;进一步借助软对齐方式获取论元间局部语义的推理权重,形成论元间交互语义信息的表征;再将两类信息结合进行篇章关系的局部推理,并通过堆叠多层局部推理部件构建了汉语篇章关系及主次联合识别框架,在CDTB语料库上的关系识别F_(1)值达到了67.0%。该文进一步将该联合识别模块嵌入一个基于转移的篇章解析器,在自动生成的篇章结构下进行篇章关系及主次的联合分析,形成了完整的汉语篇章解析器。Discourse relation recognition plays a crucial part in discourse parsing.In Chinese,the task is much more challenging due to the high proportion of implicit discourse relations without explicit connectives as inference clues.This paper proposed a multi-layer local inference method for Chinese Discourse Relation Recognition.It employs bi-directional LSTM and multi-head self-attention mechanism to encode independent arguments,and then generate interactive pair representations using soft alignment between arguments achieved with soft attention.Both independent representations and interactive representations are then combined to perform local inference.By stacking the above local inference modules in our framework,we achieve 67.0%in Macro-F_(1)value on CDTB corpus.Furthermore,a full automatic discourse parser is established by incorporating our trained model into an existing transition-based Chinese discourse parser,which can jointly learn the discourse relation and nuclearity.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33