检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张召武 徐彬[1] 高克宁[1] 王同庆 张乔乔 ZHANG Zhaowu;XU Bin;GAO Kening;WANG Tongqing;ZHANG Qiaoqiao(School of Computer Science and Engineering,Northeastern University,Shenyang,Liaoning 110179,China)
机构地区:[1]东北大学计算机科学工程学院,辽宁沈阳110179
出 处:《中文信息学报》2022年第7期114-122,共9页Journal of Chinese Information Processing
基 金:国家自然科学基金联合基金(U1811261);中央高校基本科研业务费专项资金(N2116019)。
摘 要:在教育领域中,命名实体识别在机器自动提问和智能问答等相关任务中都有应用。传统的中文命名实体识别模型需要改变网络结构来融入字和词信息,增加了网络结构的复杂度。另一方面,教育领域中的数据对实体边界的识别要十分精确,传统方法未能融入位置信息,对实体边界的识别能力较差。针对以上的问题,该文使用改进的向量表示层,在向量表示层中融合字、词和位置信息,能够更好地界定实体边界和提高实体识别的准确率,使用BiGRU和CRF分别作为模型的序列建模层和标注层进行中文命名实体识别。该文在Resume数据集和教育数据集(Edu)上进行了实验,F_(1)值分别为95.20%和95.08%。实验结果表明,该文方法对比基线模型提升了模型的训练速度和实体识别的准确性。In the field of education,named entity recognition is widely used in Automatic machine questioning and Intelligent question answering.The traditional Chinese named entity recognition model needs to change the network structure to incorporate character and word information,which increases the complexity of the network structure.On the other hand,the data in the education field must be very accurate in the identification of entity boundaries.Traditional methods cannot incorporate location information,and the ability to identify entity boundaries is poor.In response to the above problems,this article uses an improved vector representation layer to integrate words,character,and location information in the vector representation layer,which can better define entity boundaries and improve the accuracy of entity recognition.BiGRU and CRF are used as models respectively.The sequence modeling layer and the annotation layer perform Chinese named entity recognition.This article conducted experiments on the Resume data set and the education data set(Edu),and the F1 values were 95.20%and 95.08%,respectively.The experimental results show that the method proposed in this paper improves the training speed of the model and the accuracy of entity recognition compared with the baseline model.
关 键 词:中文命名实体识别 BiGRU-CRF 简单向量表示层(SVR)
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.24.193