基于引力搜索-粒子群优化算法的电力系统经济调度  被引量:4

Economic Dispatching of Power Systems Based on Gravitational Search-Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:陈振宇 王子悦[1] 李新宇[1] 张春江[1] CHEN Zhenyu;WANG Ziyue;LI Xinyu;ZHANG Chunjiang(School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,Hubei,China)

机构地区:[1]华中科技大学机械科学与工程学院,湖北武汉430074

出  处:《济南大学学报(自然科学版)》2022年第5期603-608,共6页Journal of University of Jinan(Science and Technology)

基  金:国家自然科学基金项目(51905199)。

摘  要:建立电力系统经济调度模型;引入引力搜索算法,计算粒子群中各粒子之间的引力以及各粒子的质量,求解各粒子的加速度,设置粒子群的自适应权重;提出引力搜索-粒子群优化算法进行搜索求解,获得粒子适应度最大的个体,根据最优个体位置获得最优电力系统经济调度方案。结果表明:相比于粒子群优化算法,所提出算法的调度精度更高,发电机组输出功率更小;与传统电力系统经济调度算法相比,所提出算法的调度性能更优,优化得到更低的发电成本,在电力系统经济调度中的适用度更高。An economic dispatching model of power systems was established. Gravitational search algorithm was introduced to calculate the gravity between each particle and the mass of each particle in a particle swarm. Dynamic acceleration of each particle was solved, and adaptive weights of the particle swarm were set. Gravitational search-particle swarm optimization algorithm was proposed to search and solve, and the individual with the largest particle fitness was obtained. According to the optimal individual position, the optimal economic dispatching scheme of power systems was obtained. The results show that compared with particle swarm optimization algorithm, the proposed algorithm has higher dispatching accuracy and smaller output power of generating sets. Compared with traditional power system dispatching algorithms, the proposed algorithm has better dispatching performance, lower generating cost, and higher applicability in economic dispatching of power systems.

关 键 词:电力系统经济调度 粒子群优化算法 引力搜索 发电机组 

分 类 号:TM734[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象