检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄华[1] 姚嘉靖 薛文虎 吕延军[2] HUANG Hua;YAO Jiajing;XUE Wenhu;LYU Yanjun(School of Mechanical Engineering,Lanzhou University of Technology,Lanzhou 730050,China;School of Mechanical and Precision Instrument Engineering,Xi'an University of Technology,Xi'an 710048,China)
机构地区:[1]兰州理工大学机电工程学院,甘肃兰州730050 [2]西安理工大学机械与精密仪器工程学院,陕西西安710048
出 处:《计算机集成制造系统》2022年第8期2419-2429,共11页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(51965037,51565030)。
摘 要:针对不同加工参数下的刀具磨损建模问题,提出一种基于多域特征联合分布适配的刀具状态识别方法,以提高刀具状态识别模型的泛化性能与识别精度。对切削过程中不同加工参数下的传感器信号数据,提取时域、频域、时频域特征,通过联合分布适配算法(JDA)缩小特征间的差异,适配后的特征输入到K-最近邻分类器(KNN)进行磨损状态识别。实验结果表明,该方法能够有效识别不同加工参数下的刀具磨损状态,平均识别精度可提升12%以上,具有较好的泛化性能和识别精度。Aiming at the modeling problem of tool wear under different machining parameters,a tool state recognition method based on joint distribution adaptation of multi-domain features was proposed to improve the tool state recognition model's generalization performance and recognition accuracy.For the data of sensor signals which under different machining parameters in the cutting process,the features were extracted in time domain,frequency domain as a well as time-frequency domain.Then the differences between the features were reduced by joint Distribution Adaptation Algorithm(JDA),and the adapted features were input to K-Nearest Neighbor(KNN)classifier to identify the wear state.The experimental results showed that the proposed method could identify the tool wear state under different machining parameters effectively,and the average recognition accuracy could be improved by more than 12%.It has great generalization and identification accuracy.
关 键 词:多域特征 刀具磨损 联合分布适配 K-最近邻分类器
分 类 号:TH164[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249