A CONFORMING QUADRATIC POLYGONAL ELEMENT AND ITS APPLICATION TO STOKES EQUATIONS  

在线阅读下载全文

作  者:Xinjiang Chen Yanqiu Wang 

机构地区:[1]Jiangsu Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China

出  处:《Journal of Computational Mathematics》2022年第4期624-648,共25页计算数学(英文)

基  金:supported by the NSFC grant 11671210 and 12171244.

摘  要:In this paper,we construct an H1-conforming quadratic finite element on convex polygonal meshes using the generalized barycentric coordinates.The element has optimal approximation rates.Using this quadratic element,two stable discretizations for the Stokes equations are developed,which can be viewed as the extensions of the P2-P0 and the Q2-(discontinuous)P1 elements,respectively,to polygonal meshes.Numerical results are presented,which support our theoretical claims.

关 键 词:Quadratic finite element method Stokes equations Generalized barycentric coordinates 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象