检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张云鹏 杨新生[2] 邵定国[1] 张长庚[2] 王清旋 傅为农[3] ZHANG Yunpeng;YANG Xinsheng;SHAO Dingguo;ZHANG Changgeng;WANG Qingxuan;FU Weinong(School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China;State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300130,China;Department of Electrical Engineering,The Hong Kong Polytechnic University,Hong Kong 999077,China)
机构地区:[1]上海大学机电工程与自动化学院,上海200444 [2]河北工业大学省部共建电工装备可靠性与智能化国家重点实验室,天津300130 [3]香港理工大学电机工程系,中国香港999077
出 处:《高电压技术》2022年第7期2754-2761,共8页High Voltage Engineering
基 金:国家自然科学基金(51807048);上海市青年科技英才扬帆计划(20YF1412600);省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学)开放课题基金(EERI_KF_(2)020012)。
摘 要:为了高效利用现有并行计算资源、提高电磁场数值分析效率,提出一种自适应区域分解有限元法用以电磁场求解。该方法是在加性Schwarz区域分解法中引入基于度量张量的各向异性网格自适应方法,将h型自适应有限元方法与区域分解方法的优点结合起来,在求解过程中生成对场分布响应更好的网格。为避免子区域独立网格自适应可能导致的悬点,在每步求解结束后对整个定义域的网格进行统一调整。计算过程中的多次子区域划分通过METIS实现,以基于当前网格对计算量在多处理器间进行合理分配。为进一步提高求解效率,在代数方程求解中将区域分解法用作Krylov子空间法的预处理算子。最后通过两个典型数值算例对所提方法在精度和效率方面的性能做了验证。结果表明:所提方法在保证求解精度的同时,所需自由度数目有显著降低(两个算例分别降低50%和36%),计算效率得到有效提高,验证了所提方法的有效性。In order to fulfill the efficient utilization of parallel computing resource and improve the efficiency of electromagnetic field analysis,an adaptive domain decomposition finite element method(FEM)is proposed for electromagnetic field analysis.The computational efficiency is improved while ensuring the precision by efficiently exploiting the parallel computing resources.The h-adaptive FEM is combined with the domain decomposition method in the proposed method.The metric-based anisotropic mesh adaption method is introduced to the additive Schwarz method to generate optimized meshes during the computation.In order to avoid the nonconforming mesh,which may be generated during the separate mesh adaption of subdomains,the mesh of entire domain is adapted together in each step.The domain decomposition is conducted several times by the METIS,which distributes the computation effort based on the current mesh.The additive Schwarz method is used as a preconditioner for the Krylov methods to further improve the computation efficiency.The performance of the proposed method in terms of precision and efficiency is show-cased with two numerical examples.The results reveal that,while ensuring the accuracy of solution,the number of degrees of freedom required by the proposed method is significantly reduced(by 50%and 36%for these two numerical examples),hence the computational efficiency is effectively improved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157