检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏鹏[1,2] 彭谨 刘振江[1,2] 王小伟[1,2] 王昊 常红发[1,2] 杨里 孙广胜[1,2] 李红卫 牛勇[4] Xia Peng;Peng Jin;Liu Zhengjiang;Wang Xiaowei;Wang Hao;Chang Hongfa;Yang Li;Sun Guangsheng;Li Hongwei;Niu Yong(Forensic science cene Chonging publicsecuriybureau,Chongqing 40000;Chongqing keylaboratoyofforensicmedical technologyon crime scene,Chongqing,400700;West China School of Basic Medical sciences and forensic medicine,Hwaseo Medical Center,Sichuan University,Sichuan 610041;Department ofCriminal Investigation,Ministryof Public Security PC.R.Beijing 100741)
机构地区:[1]重庆市公安局物证鉴定中心,重庆400700 [2]犯罪现场法医物证技术重庆市重点实验室,重庆400700 [3]四川大学华西医学中心基础医学与法医学院,四川成都610041 [4]中华人民共和国公安部刑事侦查局技术处,北京100741
出 处:《中国法医学杂志》2022年第4期323-326,共4页Chinese Journal of Forensic Medicine
基 金:公安部技术研究计划项目“基于人工智能条件下的多维度人体死亡时间综合推断研究”(2018JSYJA15)。
摘 要:目的 利用集成多种机器学习算法对死亡时间进行推断。方法 收集近5年来中国西部某地546起死亡案例的尸体数据,利用KNN、隔离森林和SMOTE(Synthetic Minority Oversampling Technique)超采样算法对数据进行整理填充,开发出一种将决策树、随机森林和logistic回归集成在一起的机器学习算法,基于博弈论的sharpley指数对模型中重要影响因子进行比较,优化参数,进而推断死亡时间。结果 通过集成方法,在数据从不完整到完整的过程中,将决策树、随机森林和logistic回归三种准确度在70%~80%的弱分类器集成为准确度在99%以上的强分类器,通过17例案例的实际应用,误差在4 h以内的案例达41.18%。结论 利用集成算法可以有效的将多种机器学习算法集成为推断死亡时间准确度更高的算法,基于此建立的死亡时间推断模型可以应用于死亡时间推断。Objective To estimate the post mortem interval(PMI) by integrating multiple machine learning algorithms. Methods Cadaver data from 546 death cases that happened in a western China locality over the past five years were collected, and the data were sorted and filled by over-sampling Algorithm, such as KNN, Isolated Forest and Synthetic Minority Oversampling Technique(SMOTE). A machine learning algorithm that integrates decision tree, random forest and logistic regression was developed to compare the important influencing factors in the model based on the Sharpley index,optimize the parameters, and thus infer the PMI. Results Through the integration method, three sets of weak classifiers with 70 % ~ 80 % accuracy, including decision trees, random forests and logistic regression, were combined together and turned into strong classifiers with over 99 % accuracy, when the incomplete data became complete. 41.18 % of the cases with an error of less than 4 hours were achieved through the application of 17 cases in practical fields. Conclusion The use of integration algorithm can effectively combine multiple machine learning algorithms into one with higher accuracy for PMI estimation, and the inference model based on this can be applied to PMI estimation in practice.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4