检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵孟涛 范仁宇 周康明 孙会敏[2] 戴传云[1] ZHAO Mengtao;FAN Renyu;ZHOU Kangming;SUN Huimin;DAI Chuanyun(Chongqing Key Lab.of Industrial Fermentation Microorganisms,College of Chemistry and Chemical Engineering,Chongqing University of Science and Technology,Chongqing 401331;NMPA Key Lab.of Quality Research and Evaluation of Pharmaceutical Excipients,China Institute for Food and Drug Control,Beijing 100050)
机构地区:[1]重庆科技学院化学化工学院,工业发酵微生物重庆市重点实验室,重庆401331 [2]中国食品药品检定研究院,国家药品监督管理局药用辅料质量研究与评价重点实验室,北京100050
出 处:《中国医药工业杂志》2022年第6期868-875,895,共9页Chinese Journal of Pharmaceuticals
基 金:国家“重大新药创制”科技重大专项(2017ZX09101-001-006);重庆市技术创新与应用发展专项面上项目(cstc2020jscx-msxmX0048)。
摘 要:针对微米级药用辅料预胶化淀粉离散元参数难以获得的问题,本研究根据量纲理论将预胶化淀粉半径放大至1 mm,应用Plackett-Burman设计、最陡爬坡试验和Box-Behnken设计求解得到了会显著影响提升缸法测得休止角的离散元参数最优值。在此基础上,从力链角度揭示了不同提升速度造成同一物料休止角存在差异的原因。结果表明,显著性离散元参数最优值如下:预胶化淀粉-预胶化淀粉静摩擦系数为0.503,预胶化淀粉-预胶化淀粉滚动摩擦系数为0.276,预胶化淀粉-不锈钢滚动摩擦系数为0.256,仿真模拟所得的休止角结果与实测得到的休止角的相对误差为0.88%。提升速度主要影响提升阶段力链的数目、变化速率和大小,低提升速度最终形成的力链数目较多、颗粒间力较大、角度较大。仿真模拟结果与真实试验结果基本无差异,表明标定得到的参数准确,可为微米级药用辅料预胶化淀粉离散元参数的选取提供参考。力链分析揭示了力的分布规律,可为制药过程中固体制剂的混合、转移和压片等过程的仿真模拟提供理论基础。To address the problem of difficulty in obtaining discrete element parameters for micron-sized pharmaceutical excipient pregelatinized starch,the radius of pregelatinized starch was scaled up to 1 mm according to the dimensional theory,then the optimal values of discrete element parameters that significantly affected the angle of repose determined by lifting cylinder method were obtained by applying Plackett-Burman design,steepest climb experiment and Box-Behnken design.On this basis,the reasons for the differences in angle of repose result of the same material caused by different lifting speeds were revealed from the perspective of force chain.The results showed that the optimum values of the significant discrete element parameters were as follows:0.503 for the pregelatinized starch-pregelatinized starch static friction coefficient,0.276 for the pregelatinized starch-pregelatinized starch rolling friction coefficient,0.256 for the pregelatinized starch-stainless steel rolling friction coefficient,and the relative error between simulated and measured results for angle of repose was 0.88%.Lifting speed mainly affected the number,rate of change and size of the force chain in the lifting stage.Lower lifting speed eventually formed a larger number of force chains,larger inter-particle forces and larger angles.The simulation results were basically not different from the real experiment results,indicating that the parameters obtained by calibration were accurate and provided a reference for the selection of discrete element parameters of micron-sized pharmaceutical excipient pregelatinized starch.The force chain analysis revealed the force distribution pattern and provided a theoretical basis for the simulation of mixing,transferring and tabletting of solid formulations in the pharmaceutical process.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31