检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白天[1,2] 徐明蔚 刘思铭 张佶安[3] 王喆 BAI Tian;XU Ming-wei;LIU Si-ming;ZHANG Ji-an;WANG Zhe(College of Computer Science and Technology,Jilin University,Changchun 130012,China;Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China;College of Software,J ilin University,Changchun 130012,China;School of Law,Jilin University,Changchun 130012,China)
机构地区:[1]吉林大学计算机科学与技术学院,长春130012 [2]吉林大学符号计算与知识工程教育部重点实验室,长春130012 [3]吉林大学软件学院,长春130012 [4]吉林大学法学院,长春130012
出 处:《吉林大学学报(工学版)》2022年第8期1872-1880,共9页Journal of Jilin University:Engineering and Technology Edition
基 金:国家重点研发计划项目(2018YFC083230X);主题科学家专项项目(20180101036JC);吉林省科技发展计划项目(20200801033GH,YDZJ202101ZYTS128)。
摘 要:争议焦点是诉辩双方存在争议的焦点问题,是驱动案件审理、纠纷解决的主线和枢纽。准确快速地归纳争议焦点有利于提高庭审质量和效率,达到支撑“智慧司法”建设的效果。本文提出了一个端到端的模型来解决这个问题,模型基于深度神经网络对诉辩双方文本语义信息进行深层理解,通过结合字词级与句子级信息,同时进行句子级的矛盾检测、分类与完整诉辩文本的矛盾分类,通过基于规则的方法将二者结果融合,最终识别出诉辩文本中存在的全部争议焦点。在8个真实诉辩文本数据集上的实验结果表明:本文模型可以快速准确地识别出诉辩双方存在的争议焦点,与此领域当前主流方法相比,在识别准确率上有较大提升,对诉辩文本争议焦点的智能化识别提出了一个有效的新路径。The dispute focus is the focus of dispute between the plaintiff and the defendant,which is the main line and hub of leading the trial and settlement of disputes. Accurate and rapid induction of the focus of disputes is conducive to improve the quality and efficiency of the trial,and achieve the effect of supporting the construction of ′intelligent justice′. An innovative end-to-end model was proposed to solve this problem. Based on deep neural network,this model deeply understood the semantic information of the text between both parties. By combining word level and sentence level information,this study carried out sentence level contradiction detection, classification, and complete paragraph level contradiction classification. Through certain rules,this method combined the results of the two parts,finally identified all the dispute focuses in the pleading text. Experiments on real datasets show that the proposed model can identify the focus of dispute between the plaintiff and the defendant accurately and quickly. The recognition accuracy is improved effectively compared with the existing methods.An effective new path is proposed for the intelligent identification of the dispute focus of the defense text.
关 键 词:计算机应用技术 司法人工智能 争议焦点 裁判文书 自然语言处理 文本匹配
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117