检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:芮广军 孙朋 杨会宁 薛倩倩 钱悦辰 刘雅婷 随仙姿 RUI Guangjun;SUN Peng;YANG Huining;XUE Qianqian;QIAN Yuechen;LIU Yating;SUI Xianzi(School of Environmental and Surveying Engineering,Suzhou University,234000,Suzhou,Anhui,China)
机构地区:[1]宿州学院环境与测绘工程学院,安徽宿州234000
出 处:《中国水土保持科学》2022年第4期74-83,共10页Science of Soil and Water Conservation
基 金:安徽省教育厅高校自然科学重点项目“变化环境下淮河流域蒸散特征及估算模型优化研究”(KJ2019A0670);宿州学院博士科研启动基金项目“宿州市冬小麦作物蒸散规律与影响机制研究”(2017jb04);宿州学院优秀学术技术骨干项目(2020XJGG07);宿州学院地理科学一流本科专业项目(szxy2020ylzy02)。
摘 要:为探究60年来淮河流域多维时空尺度上的干湿特征,量化过渡期气候区干湿气候对全球变化的响应差异,以淮河流域27个站点1959-2018年的逐月气象数据为基础,引入云模型开展研究区干湿格局的量化描述。结果表明:1)研究区干湿指数均值为0.882,表现为“五峰五谷”的波动上升趋势,上升速率为0.0004/a,干湿指数云特征表明60年来整体离散度较低,随机性、模糊性较小;2)不同季节干湿指数年际变化,呈现出夏季﹥秋季﹥春季﹥冬季的特征,呈现春秋季下降、夏冬上升的格局,且四季干湿指数分布不均匀性、不稳定性高,春季变幅最稳定,夏冬次之,秋季是降幅最大的时段;3)在空间尺度上,淮河流域干湿分布格局与降水分布相似,变率由北向南增大,除东北部外其他站点趋于变湿,相较于干湿指数的时间分布,干湿指数在空间分布上都较为离散、不均匀。淮河流域干湿格局表现为较大的时空差异,基于云模型对干湿指数的量化描述可作为干湿格局描述的重要辅助手段。[Background]The change of dry-wet conditions has great influence on industrial development,agricultural production and layout,as well as ecological environment,etc.The Huaihe River Basin is an overlapping area of climate,high and low latitude,sea and land facies in the north and south of China,and the study of its dry-wet pattern has also become a hot topic in recent years.Therefore,we carried out this study in order to provide case support for scientifically understanding the response difference law of the dry-wet pattern of Huaihe River Basin and regional system under the background of global change,to make a new attempt to explore the evolution process and quantitative means of surface dry-wet process,and also to provide background environmental data for soil and water conservation under the transition climate belt.[Methods]The Huaihe River Basin was taken as the research area,and the monthly meteorological data from 27 stations in the basin from 1959 to 2018 were selected.Based on FAO-PM56 and climate trend slope analysis,this paper introduced cloud model to carry out a quantitative description of the dry-wet pattern of the study area,the missing data were interpolated by the average data of neighboring months,and the seasonal division was carried out according to the meteorological standard and the principle of facilitating the study of the inter-annual variation.[Results]1)The average dry-wet index in the study area was 0.882,showing a rising trend of“5 peaks and 5 valleys”,with a rising rate of 0.0004/a.The cloud characteristics of the dry-wet index indicated that the overall dispersion of dry-wet index K was low,and the randomness and fuzziness were small in the past 60 years.2)The inter-annual variation of dry-wet index K in different seasons presented the characteristics of summer>autumn>spring>winter,showing the pattern of decline in spring and autumn,of rise in summer and winter.The distribution entropy value of the four seasons had high unevenness and instability.The amplitude of change was the m
分 类 号:P467[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.142.123