改进极限学习机算法在舰船安全性预测中的应用  被引量:3

Application of improved extreme learning machine algorithm in ship safety prediction

在线阅读下载全文

作  者:胡晓辉 胡兴[3] HU Xiao-hui;HU Xing(Nanchang Mining Machinery Research Institute,Nanchang 330013,China;Jiangxi Vocational College of Mechanical and Electrical Technology,Nanchang 330013,China;Jiujiang Branch of the 707 Research Institute of CSSC,Jiujiang 332007,China)

机构地区:[1]南昌矿山机械研究所,江西南昌330013 [2]江西机电职业技术学院,江西南昌330013 [3]中国船舶集团有限公司第七〇七研究所九江分部,江西九江332007

出  处:《舰船科学技术》2022年第16期151-154,共4页Ship Science and Technology

基  金:江西省教育厅科学技术研究项目(GJJ204203)。

摘  要:舰船在航行过程中受到自然因素、自身因素和水域因素影响易发生安全事故,造成严重程度不同的人员伤亡、直接经济损失和海洋环境污染损失。为保证舰船航行的安全性,采用极限学习机算法对安全性进行预测,借助极限学习机算法泛化性能好、学习速度快等优势,准确得出最优解,提高航行安全性影响因素识别的准确率。本文概述改进极限学习机算法与网络训练流程,提出改进极限学习机算法在舰船安全性预测中的预测流程与模型构建。仿真实验表明,本文提出的算法能够提高舰船安全性识别的准确性和时效性。In the course of navigation, ships are prone to safety accidents due to natural factors, their own factors and water factors, resulting in casualties, direct economic losses and marine environmental pollution losses of varying degrees of severity. In order to ensure the safety of ship navigation, the extreme learning machine algorithm should be used to predict the safety. With the help of the advantages of the extreme learning machine algorithm, such as good generalization performance and fast learning speed, the optimal solution can be accurately obtained, and the navigation safety can be improved. The accuracy of factor identification. This paper summarizes the improved extreme learning machine algorithm and network training process, and proposes the prediction process and model construction of the improved extreme learning machine algorithm in ship safety prediction. Simulation experiments show that the algorithm proposed in this paper can improve the accuracy of ship safety identification. performance and effectiveness.

关 键 词:ELM算法 舰船 安全性预测 

分 类 号:U665[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象