检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张祖宇 滕永核 秦元丽[3] 廖超明 凌子燕 Zhang Zuyu;Teng Yonghe;Qin Yuanli;Liao Chaoming;Ling Ziyan(Guangxi Zhuang Autonomous Region Institute of Geographic Information Surveying and Mapping,Liuzhou,Guangxi 545000,China;Remote Sensing Surveying and Mapping Research,Guangxi Academy of Sciences,Nanning,Guangxi 530001,China;Guangxi Forestry Research Institute,Nanning,Guangxi 530002,China;College of Natural Resources and Geomatics,Nanning Normal University,Nanning,Guangxi 530001,China;Guangxi Yaochang Space Information Technology Co.,Ltd.,Nanning,Guangxi 530023,China)
机构地区:[1]广西壮族自治区地理信息测绘院,广西柳州545000 [2]广西科学院遥感测绘研究院,广西南宁530001 [3]广西壮族自治区林业科学研究院,广西南宁530002 [4]南宁师范大学自然资源与测绘学院,广西南宁530001 [5]广西遥畅空间信息科技有限公司,广西南宁530023
出 处:《广西林业科学》2022年第4期516-519,共4页Guangxi Forestry Science
基 金:国家自然科学基金项目(42164001,42101369);2022年本科教育教学重点项目建设经费(602030389173301)。
摘 要:基于深度学习和无人机获取的高分辨率影像是快速提取林地等地表覆被空间信息的一种新方法。为给后续的林地覆被空间信息自动提取提供技术参考,以南宁市上林县某村的甘蔗(Saccharum officinarum)种植区为研究对象,采用UNet模型对研究区无人机正射影像进行甘蔗种植区的空间位置信息提取。针对目标区域样本数据缺少的问题,首先采用数据增广方式对训练数据集进行增广,然后采用迁移学习的方法在开源数据集预训练U-Net模型,最后利用预训练UNet模型对研究区的影像数据进行训练和测试。结果表明,该方法从正射影像中提取甘蔗种植区空间位置信息的准确率、精确率和召回率分别为98.34%、93.10%和89.21%,不受甘蔗种植区分布密集程度的影响。A new technique to quickly extract spatial information of land cover,such as forest land,is high-res‐olution image obtained by UAV based on deep learning.In order to provide technical reference for subsequent research on automatic extraction of forest land cover spatial information,taking Saccharum officinarum planting area of a village in Shanglin county,Nanning city as research object,U-Net model was used to extract spatial information of S.officinarum planting area from UAV orthophoto images.Data augmentation was used to aug‐ment training data set,transfer learning was used to pre-trained U-Net model in open source data set,and final‐ly the pre-trained U-Net model was used to train and test image data in study area to solve the problem of lack of sample data in the target area.Results showed that method of extracting spatial information of S.officinarum planting area from orthophotos had an accuracy,a precision rate and a recall rate of 98.34%,93.10%and 89.21%respectively and was not affected by density of S.officinarum planting area.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90