检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨旭[1] 黄雪梅[1] YANG Xu;HUANG Xuemei(Chongqing College of Finance and Economics,Chongqing City 402160,China)
出 处:《中国饲料》2022年第14期135-138,共4页China Feed
基 金:2021年重庆市教育科学规划项目(2021-GX-421)。
摘 要:随着饲料行业多元化加速发展,受市场、外界竞争环境等客观因素的影响,饲料企业的风险也在逐步增加。为保障饲料企业的稳步发展,借助LSTM神经网络相关算法积极构建饲料企业财务风险预警模型具有重要意义。本文立足饲料企业当前发展的实际情况,选取饲料企业财务风险预警的因素指标,通过LSTM神经网络算法输出基于LSTM的饲料企业财务风险预警模型的风险预警值,为饲料企业财务风险预警提供参考。验证发现,相对于其他通用的预警模式来讲,基于LSTM神经网络的饲料企业财务风险预警模型更具准确性。With the rapid development of feed industry diversification,the risks of feed enterprises are gradually increasing due to the impact of objective factors such as the market and the external competitive environment.In order to ensure the steady and sustainable development of feed enterprises,it is of great significance to actively build a feed enterprise financial risk early warning model with the help of relevant algorithms of LSTM neural network.Based on the actual development of feed enterprises,this paper selects the factor indicators of feed enterprise financial risk early warning,and outputs the risk early warning value of feed enterprise financial risk early warning model based on LSTM neural network algorithm,so as to provide reference for feed enterprise financial risk early warning.It is found that compared with other common early warning models,the feed enterprise financial risk early warning model based on LSTM neural network is more accurate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117