A Fourth-Order Upwinding Embedded Boundary Method(UEBM)for Maxwell’s Equations in Media with Material Interfaces:Part I  

在线阅读下载全文

作  者:Shaozhong Deng Wei Cai 

机构地区:[1]Department of Mathematics and Statistics,University of North Carolina at Charlotte,Charlotte,NC 28223-0001,USA

出  处:《Communications in Computational Physics》2006年第4期744-764,共21页计算物理通讯(英文)

摘  要:In this paper,we present a new fourth-order upwinding embedded boundary method(UEBM)over Cartesian grids,originally proposed in the Journal of Computational Physics[190(2003),pp.159-183.]as a second-order method for treating material interfaces for Maxwell’s equations.In addition to the idea of the UEBM to evolve solutions at interfaces,we utilize the ghost fluid method to construct finite difference approximation of spatial derivatives at Cartesian grid points near the material interfaces.As a result,Runge-Kutta type time discretization can be used for the semidiscretized system to yield an overall fourth-order method,in contrast to the original second-order UEBM based on a Lax-Wendroff type difference.The final scheme allows time step sizes independent of the interface locations.Numerical examples are given to demonstrate the fourth-order accuracy as well as the stability of the method.We tested the scheme for several wave problems with various material interface locations,including electromagnetic scattering of a plane wave incident on a planar boundary and a two-dimensional electromagnetic application with an interface parallel to the y-axis.

关 键 词:Yee scheme upwinding embedded boundary method(UEBM) ghost fluid method(GFM) Maxwell’s equations 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象