检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Communications in Computational Physics》2006年第4期744-764,共21页计算物理通讯(英文)
摘 要:In this paper,we present a new fourth-order upwinding embedded boundary method(UEBM)over Cartesian grids,originally proposed in the Journal of Computational Physics[190(2003),pp.159-183.]as a second-order method for treating material interfaces for Maxwell’s equations.In addition to the idea of the UEBM to evolve solutions at interfaces,we utilize the ghost fluid method to construct finite difference approximation of spatial derivatives at Cartesian grid points near the material interfaces.As a result,Runge-Kutta type time discretization can be used for the semidiscretized system to yield an overall fourth-order method,in contrast to the original second-order UEBM based on a Lax-Wendroff type difference.The final scheme allows time step sizes independent of the interface locations.Numerical examples are given to demonstrate the fourth-order accuracy as well as the stability of the method.We tested the scheme for several wave problems with various material interface locations,including electromagnetic scattering of a plane wave incident on a planar boundary and a two-dimensional electromagnetic application with an interface parallel to the y-axis.
关 键 词:Yee scheme upwinding embedded boundary method(UEBM) ghost fluid method(GFM) Maxwell’s equations
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7