Novel Indicators for Adverse Glycemic Events Detection Analysis Based on Continuous Glucose Monitoring Neural Network Predictive Models  

在线阅读下载全文

作  者:Lu Guannan Wang Mengling FOX Tamara Jiang Peng Jiang Fusong 卢冠男;王梦灵;FOX Tamara;蒋鹏;蒋伏松(Key Laboratory of Smart Manufacturing in Energy Chemical Process,Ministry of Education,Shanghai,200237,China;INTERGRIS Mental Health Center,Spencer,OK,73084,USA;Shanghai Jiao Tong University Affiliated Sixth People’s Hospital,Shanghai,200237,China)

机构地区:[1]Key Laboratory of Smart Manufacturing in Energy Chemical Process,Ministry of Education,Shanghai,200237,China [2]INTERGRIS Mental Health Center,Spencer,OK,73084,USA [3]Shanghai Jiao Tong University Affiliated Sixth People’s Hospital,Shanghai,200237,China

出  处:《Journal of Shanghai Jiaotong university(Science)》2022年第4期498-504,共7页上海交通大学学报(英文版)

摘  要:This paper proposes five indicators to evaluate the effectiveness and viability for adverse glycemic events detection based on predicted blood glucose(BG)values.False negative rate(FNR)and false positive rate(FPR)are defined to evaluate whether it can detect adverse glycemic events(AGEs)based on the predicted value.The temporal overlap(TO)and time difference(TD)are proposed to evaluate whether the predicted model can capture the accurate time duration of AGEs.The sum of squared percent(SSP)measures comprehensive similarity between prediction values and true values.We examined 328 patients with type 2 diabetes,containing real continuous glucose monitoring data with 5-minute time intervals.Autoregressive integrated moving average model has lower FNR and FPR.The gated recurrent unit has better temporal behavior where the mean TO with standard deviation is calculated as 0.84±0.18,and the mean TD with standard deviation is(4.39±4.01)min.Neural models have better effects on SSP(for hypoglycemia,long-short tern memory possesses 0.149 and 0.246).These five indicators are able to evaluate whether we can detect abnormal BG levels and reveal the temporal behavior of AGEs effectively.The proposed neural predictive models have more promising application in AGE detection.

关 键 词:adverse glycemic events detection glucose prediction neural network evaluation INDICATORS 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象