检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕可晶 严虹[1] LYU Kejing;YAN Hong(State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,P.R.China;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,P.R.China)
机构地区:[1]中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101 [2]中国科学院大学资源与环境学院,北京100049
出 处:《重庆大学学报》2022年第8期141-150,共10页Journal of Chongqing University
基 金:国家重点研发计划资助项目(2017YFB0503501)。
摘 要:高精度地图是实现自动驾驶技术必不可少的基础设施,车道线是高精度地图车道级路网的重要组成部分。以往高精度地图的车道线检测多基于车载摄像头数据,存在成像范围有限、需要透视变换和多次拼接造成的效率问题。基于无人机航拍影像,采用U-Net网络识别道路区域,过滤非道路区域噪声,通过HSL颜色变换和Sobel算子分别计算车道线颜色和边缘梯度特征,使用Otsu算法自动确定特征分割阈值获得二值化车道线特征图,通过局部最大值算法确定滑动窗口的初始位置,最后借助滑动窗口算法和多项式检测拟合车道线。实验结果表明,在保证一定检测精度的前提下,单条车道线检测长度超过了百米,道路检测效率达到25.2 m/s,对比于地面影像的检测算法具有明显的效率优势。High definition map is an essential infrastructure to realize automatic driving technology, and lane line is an important part of lane level road network of high definition map. Currently, lane detection of high definition map is mostly based on the data of vehicle camera, which is low efficient due to limited imaging range and need for perspective transformation and multiple stitching. In this paper, based on UAV aerial images, U-Net network is used to identify road areas and filter noise in non-road areas. HSL color transform and Sobel operator are used to calculate lane color and edge gradient features respectively. Otsu algorithm is used to automatically determine feature segmentation threshold to obtain binary lane feature map. Local maximum algorithm is used to determine the initial position of sliding window. Finally, lane lines are fitted by sliding window algorithm and polynomial detection. The experimental results show that with certain detection accuracy, the detection length of a single lane line exceeds 100 m, and the road detection efficiency reaches 25.2 m/s. Compared with the lane line detection algorithms based on vehicle-mounted camera data, the proposed method is obviously more efficient.
关 键 词:高精度地图 无人机影像 车道线提取 U-Net 视觉特征
分 类 号:P285.4[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175