High-Order Multidomain Spectral Difference Method for the Navier-Stokes Equations on Unstructured Hexahedral Grids  被引量:2

在线阅读下载全文

作  者:Yuzhi Sun Z.J.Wang Yen Liu 

机构地区:[1]Department of Aerospace Engineering,Iowa State University,2271 Howe Hall,Ames,IA 50011,USA [2]NASA Ames Research Center,Mail Stop T27B-1,Moffett Field,CA 94035,USA

出  处:《Communications in Computational Physics》2007年第2期310-333,共24页计算物理通讯(英文)

基  金:funded by Rockwell Scientific/DARPA under contractW911NF-04-C-0102,by DOE grant DE-FG02-05ER25677 and AFOSR grant FA9550-06-1-0146.

摘  要:A high order multidomain spectral difference method has been developed for the three dimensional Navier-Stokes equations on unstructured hexahedral grids.The method is easy to implement since it involves one-dimensional operations only,and does not involve surface or volume integrals.Universal reconstructions are obtained by distributing solution and flux points in a geometrically similar manner in a unit cube.The concepts of the Riemann solver and high-order local representations are applied to achieve conservation and high order accuracy.In this paper,accuracy studies are performed to numerically verify the order of accuracy using flow problems with analytical solutions.High order of accuracy and spectral convergence are obtained for the propagation of an isotropic vortex and Couette flow.The capability of the method for both inviscid and viscous flow problems with curved boundaries is also demonstrated.

关 键 词:High order unstructured grids spectral difference Navier-Stokes. 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象