检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Po-Wen Hsieh Yintzer Shih Suh-Yuh Yang
机构地区:[1]Department of Mathematics,National Central University,Jhongli City,Taoyuan County 32001,Taiwan [2]Department of Applied Mathematics,National Chung Hsing University,Taichung 40227,Taiwan.
出 处:《Communications in Computational Physics》2011年第6期161-182,共22页计算物理通讯(英文)
基 金:supported by the National Science Council of Taiwan under the Grant NSC 97-2115-M-008-015-MY2.
摘 要:In this paper we propose a development of the finite difference method,called the tailored finite point method,for solving steady magnetohydrodynamic(MHD)duct flow problems with a high Hartmann number.When the Hartmann number is large,the MHD duct flow is convection-dominated and thus its solution may exhibit localized phenomena such as the boundary layer.Most conventional numerical methods can not efficiently solve the layer problem because they are lacking in either stability or accuracy.However,the proposed tailored finite point method is capable of resolving high gradients near the layer regions without refining the mesh.Firstly,we devise the tailored finite point method for the scalar inhomogeneous convectiondiffusion problem,and then extend it to the MHD duct flow which consists of a coupled system of convection-diffusion equations.For each interior grid point of a given rectangular mesh,we construct a finite-point difference operator at that point with some nearby grid points,where the coefficients of the difference operator are tailored to some particular properties of the problem.Numerical examples are provided to show the high performance of the proposed method.
关 键 词:Magnetohydrodynamic equations Hartmann numbers convection-dominated problems boundary layers tailored finite point methods finite difference methods
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147