Exponential Compact Higher Order Scheme for Nonlinear Steady Convection-Diffusion Equations  被引量:1

在线阅读下载全文

作  者:Y.V.S.S.Sanyasiraju Nachiketa Mishra 

机构地区:[1]Department of Mathematics,Indian Institute of Technology Madras,Chennai 600036,India

出  处:《Communications in Computational Physics》2011年第4期897-916,共20页计算物理通讯(英文)

基  金:Nachiketa Mishra is greatly indebted to the Council of Scientific and Industrial Research for the financial support 09/084(0389)/2006-EMR-I.

摘  要:This paper presents an exponential compact higher order scheme for Convection-Diffusion Equations(CDE)with variable and nonlinear convection coeffi-cients.The scheme is O(h4)for one-dimensional problems and produces a tri-diagonal system of equations which can be solved efficiently using Thomas algorithm.For twodimensional problems,the scheme produces an O(h4+k4)accuracy over a compact nine point stencil which can be solved using any line iterative approach with alternate direction implicit procedure.The convergence of the iterative procedure is guaranteed as the coefficient matrix of the developed scheme satisfies the conditions required to be positive.Wave number analysis has been carried out to establish that the scheme is comparable in accuracy with spectral methods.The higher order accuracy and better rate of convergence of the developed scheme have been demonstrated by solving numerous model problems for one and two-dimensional CDE,where the solutions have the sharp gradient at the solution boundary.

关 键 词:Finite difference higher order exponential compact CONVECTION-DIFFUSION 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象