Spectral Elliptic Solvers in a Finite Cylinder  

在线阅读下载全文

作  者:F.Auteri L.Quartapelle 

机构地区:[1]Politecnico di Milano,Via La Masa 34,20156 Milano,Italy

出  处:《Communications in Computational Physics》2009年第2期426-441,共16页计算物理通讯(英文)

摘  要:New direct spectral solvers for the 3D Helmholtz equation in a finite cylindrical region are presented.A purely variational(no collocation)formulation of the problem is adopted,based on Fourier series expansion of the angular dependence and Legendre polynomials for the axial dependence.A new Jacobi basis is proposed for the radial direction overcoming the main disadvantages of previously developed bases for the Dirichlet problem.Nonhomogeneous Dirichlet boundary conditions are enforced by a discrete lifting and the vector problem is solved by means of a classical uncoupling technique.In the considered formulation,boundary conditions on the axis of the cylindrical domain are never mentioned,by construction.The solution algorithms for the scalar equations are based on double diagonalization along the radial and axial directions.The spectral accuracy of the proposed algorithms is verified by numerical tests.

关 键 词:Spectral elliptic solvers Dirichlet and Neumann conditions cylindrical coordinates Legendre and Jacobi polynomials uncoupled vector problem 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象