检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hua Guan Yandong Jiao Ju Liu Yifa Tang
机构地区:[1]LSEC,ICMSEC,Academy of Mathematics&Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]Department of Scientific Computation and Applied Software,School of Science,Xi’an Jiaotong University,Xi’an 710049,China
出 处:《Communications in Computational Physics》2009年第8期639-654,共16页计算物理通讯(英文)
基 金:This research is partially supported by the Informatization Construction of Knowledge Innovation Projects of the Chinese Academy of Sciences“Supercomputing En-vironment Construction and Application”(INF105-SCE);National Natural Science Foundation of China(Grant Nos.10471145 and 10672143).
摘 要:By performing a particular spatial discretization to the nonlinear Schrodinger equation(NLSE),we obtain a non-integrable Hamiltonian system which can be decomposed into three integrable parts(L-L-N splitting).We integrate each part by calculating its phase flow,and develop explicit symplectic integrators of different orders for the original Hamiltonian by composing the phase flows.A 2nd-order reversible constructed symplectic scheme is employed to simulate solitons motion and invariants behavior of the NLSE.The simulation results are compared with a 3rd-order non-symplectic implicit Runge-Kutta method,and the convergence of the formal energy of this symplectic integrator is also verified.The numerical results indicate that the explicit symplectic scheme obtained via L-L-N splitting is an effective numerical tool for solving the NLSE.
关 键 词:Explicit symplectic method L-L-N splitting nonlinear Schrodinger equation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.26.108