检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chris Schoutrop Jan ten Thije Boonkkamp Jan van Dijk
机构地区:[1]Department of Applied Physics,Eindhoven University of Technology,The Netherlands [2]Department of Mathematics and Computer Science,Eindhoven University of Technology,The Netherlands
出 处:《Communications in Computational Physics》2022年第6期156-188,共33页计算物理通讯(英文)
摘 要:The reliability of BiCGStab and IDR solvers for the exponential scheme discretization of the advection-diffusion-reaction equation is investigated.The resulting discretization matrices have real eigenvalues.We consider BiCGStab,IDR(S),BiCGStab(L)and various modifications of BiCGStab,where S denotes the dimension of the shadow space and L the degree of the polynomial used in the polynomial part.Several implementations of BiCGStab exist which are equivalent in exact arithmetic,however,not in finite precision arithmetic.The modifications of BiCGStab we consider are;choosing a random shadow vector,a reliable updating scheme,and storing the best intermediate solution.It is shown that the Local Minimal Residual algorithm,a method similar to the“minimize residual”step of BiCGStab,can be interpreted in terms of a time-dependent advection-diffusion-reaction equation with homogeneous Dirichlet boundary conditions for the residual,which plays a key role in the convergence analysis.Due to the real eigenvalues,the benefit of BiCGStab(L)compared to BiCGStab is shown to be modest in numerical experiments.Non-sparse(e.g.uniform random)shadow residual turns out to be essential for the reliability of BiCGStab.The reliable updating scheme ensures the required tolerance is truly achieved.Keeping the best intermediate solution has no significant effect.Recommendation is to modify BiCGStab with a random shadow residual and the reliable updating scheme,especially in the regime of large P´eclet and small Damk¨ohler numbers.An alternative option is IDR(S),which outperforms BiCGStab for problems with strong advection in terms of the number of matrix-vector products.The MATLAB code used in the numerical experiments is available on GitLab:https://gitlab.com/ChrisSchoutrop/krylov-adr,a C++implementation of IDR(S)is available in the Eigen linear algebra library:http://eigen.tuxfamily.org.
关 键 词:BiCGStab IDR shadow residual advection-diffusion-reaction equation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3