An Adaptive Moving Mesh Method for the Five-Equation Model  被引量:1

在线阅读下载全文

作  者:Yaguang Gu Dongmi Luo Zhen Gao Yibing Chen 

机构地区:[1]School of Mathematical Sciences,Ocean University of China,Qingdao,Shandong,China [2]College of Oceanic and Atmospheric Sciences,Ocean University of China,Qingdao,Shandong,China [3]Institute of Applied Physics and Computational Mathematics,Beijing,China

出  处:《Communications in Computational Physics》2022年第6期189-221,共33页计算物理通讯(英文)

基  金:The research of Yaguang Gu is funded by China Postdoctoral Science Foundation(2021M703040);The research of Dongmi Luo is supported by the National Natural Science Foundation of China(12101063);The research of Zhen Gao is supported by the National Natural Science Foundation of China(11871443);Shandong Provincial Qingchuang Science and Technology Project(2019KJI002);Fundamental Research Funds for the Central Universities(202042004);The research of Yibing Chen is supported by National Key Project(GJXM92579).

摘  要:The five-equation model of multi-component flows has been attracting much attention among researchers during the past twenty years for its potential in the study of the multi-component flows.In this paper,we employ a second order finite volume method with minmod limiter in spatial discretization,which preserves local extrema of certain physical quantities and is thus capable of simulating challenging test problems without introducing non-physical oscillations.Moreover,to improve the numerical resolution of the solutions,the adaptive moving mesh strategy proposed in[Huazhong Tang,Tao Tang,Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws,SINUM,41:487-515,2003]is applied.Furthermore,the proposed method can be proved to be capable of preserving the velocity and pressure when they are initially constant,which is essential in material interface capturing.Finally,several classical numerical examples demonstrate the effectiveness and robustness of the proposed method.

关 键 词:Multi-component flows five-equation model finite volume method minmod limiter adaptive moving mesh method stiffened gas EOS 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象