Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models  

在线阅读下载全文

作  者:X.F.Liu Y.F.Fu W.Q.Yu J.F.Yu Z.Y.Xie 刘雪飞;付阳峰;于伟强;余继锋;谢志远(Department of Physics,Renmin University of China,Beijing 100872,China;School of Physics and Electronics,Hunan University,Changsha 410082,China)

机构地区:[1]Department of Physics,Renmin University of China,Beijing 100872,China [2]School of Physics and Electronics,Hunan University,Changsha 410082,China

出  处:《Chinese Physics Letters》2022年第6期65-70,共6页中国物理快报(英文版)

基  金:supported by the National R&D Program of China (Grant No. 2017YFA0302900);the National Natural Science Foundation of China (Grant Nos. 11774420 and 12134020);the Natural Science Foundation of Hunan Province (Grant No. 851204035);the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (Grant No. 20XNLG19)

摘  要:In the context of tensor network states,we for the first time reformulate the corner transfer matrix renormalization group(CTMRG)method into a variational bilevel optimization algorithm.The solution of the optimization problem corresponds to the fixed-point environment pursued in the conventional CTMRG method,from which the partition function of a classical statistical model,represented by an infinite tensor network,can be efficiently evaluated.The validity of this variational idea is demonstrated by the high-precision calculation of the residual entropy of the dimer model,and is further verified by investigating several typical phase transitions in classical spin models,where the obtained critical points and critical exponents all agree with the best known results in literature.Its extension to three-dimensional tensor networks or quantum lattice models is straightforward,as also discussed briefly.

关 键 词:TENSOR VARIATIONAL STRAIGHT 

分 类 号:O414.2[理学—理论物理] O469[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象