A Monotonic Algorithm for Eigenvalue Optimization in Shape Design Problems of Multi-Density Inhomogeneous Materials  

在线阅读下载全文

作  者:Zheng-fang Zhang Ke-wei Liang Xiao-liang Cheng 

机构地区:[1]Department of Mathematics,Zhejiang University,Hangzhou 310027,China

出  处:《Communications in Computational Physics》2010年第8期565-584,共20页计算物理通讯(英文)

基  金:supported by the Chinese National Science Foundation(No.10871179);the National Basic Research Programme of China(No.2008CB717806);Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP No.20070335201).

摘  要:Many problems in engineering shape design involve eigenvalue optimizations.The relevant difficulty is that the eigenvalues are not continuously differentiable with respect to the density.In this paper,we are interested in the case of multi-density inhomogeneous materials which minimizes the least eigenvalue.With the finite element discretization,we propose a monotonically decreasing algorithm to solve the minimization problem.Some numerical examples are provided to illustrate the efficiency of the present algorithm as well as to demonstrate its availability for the case of more than two densities.As the computations are sensitive to the choice of the discretization mesh sizes,we adopt the refined mesh strategy,whose mesh grids are 25-times of the amount used in[S.Osher and F.Santosa,J.Comput.Phys.,171(2001),pp.272-288].We also show the significant reduction in computational cost with the fast convergence of this algorithm.

关 键 词:Multi-density inhomogeneous materials the least eigenvalue optimization problem finite element method monotonic algorithm 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象