Truncated Gaussian RBF Differences are Always Inferior to Finite Differences of the Same Stencil Width  被引量:1

在线阅读下载全文

作  者:John P.Boyd Lei Wang 

机构地区:[1]Department of Atmospheric,Oceanic and Space Science,University of Michigan,Ann Arbor MI 48109,USA [2]Department of Mathematics and Program in Applied and Interdisciplinary Mathematics,University of Michigan,Ann Arbor MI 48109,USA

出  处:《Communications in Computational Physics》2009年第1期42-60,共19页计算物理通讯(英文)

摘  要:Radial basis functions(RBFs)can be used to approximate derivatives and solve differential equations in several ways.Here,we compare one important scheme to ordinary finite differences by a mixture of numerical experiments and theoretical Fourier analysis,that is,by deriving and discussing analytical formulas for the error in differentiating exp(ikx)for arbitrary k.‘Truncated RBF differences”are derived from the same strategy as Fourier and Chebyshev pseudospectral methods:Differentiation of the Fourier,Chebyshev or RBF interpolant generates a differentiation matrix that maps the grid point values or samples of a function u(x)into the values of its derivative on the grid.For Fourier and Chebyshev interpolants,the action of the differentiation matrix can be computed indirectly but efficiently by the Fast Fourier Transform(FFT).For RBF functions,alas,the FFT is inapplicable and direct use of the dense differentiation matrix on a grid of N points is prohibitively expensive(O(N2))unless N is tiny.However,for Gaussian RBFs,which are exponentially localized,there is another option,which is to truncate the dense matrix to a banded matrix,yielding“truncated RBF differences”.The resulting formulas are identical in form to finite differences except for the difference weights.On a grid of spacing h with the RBF asφ(x)=exp(−α^(2)(x/h)^(2)),d f dx(0)≈∑^(∞)_(m)=1 wm{f(mh)−f(−mh)},where without approximation wm=(−1)m+12α^(2)/sinh(mα^(2)).We derive explicit formula for the differentiation of the linear function,f(X)≡X,and the errors therein.We show that Gaussian radial basis functions(GARBF),when truncated to give differentiation formulas of stencil width(2M+1),are significantly less accurate than(2M)-th order finite differences of the same stencil width.The error of the infinite series(M=∞)decreases exponentially asα→0.However,truncated GARBF series have a second error(truncation error)that grows exponentially asα→0.Even forα∼O(1)where the sum of these two errors is minimized,it is shown th

关 键 词:PSEUDOSPECTRAL radial basis function high order finite difference nonstandard finite differences spectral differences 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象