Comparison and Improvement of the Computational Efficiencies of Two FFT-Based Iterative Solution Methods for the Scalar Multiple-Scattering Equation  

在线阅读下载全文

作  者:Kristopher T.Kim 

机构地区:[1]Electromagnetic Scattering Branch,Sensors Directorate,Air Force Research Laboratory,Hanscom AFB,MA 01731-3010,USA

出  处:《Communications in Computational Physics》2009年第1期108-125,共18页计算物理通讯(英文)

摘  要:We consider two existing FFT-based fast-convolution iterative solution techniques for the scalar T-matrix multiple-scattering equation[1].The use of the FFT operation requires field values be expressed on a regular Cartesian grid and the two techniques differ in how to go about achieving this.The first technique[6,7]uses the nondiagonal translation operator[1,9]of the spherical multipole field,while the second method[11]uses the diagonal translation operator of Rokhlin[10].Because of its use of the non-diagonal translator,the first technique has been thought to require a greater number of spatial convolutions than the second technique.We establish that the first method requires only half as many convolution operations as the second method for a comparable numerical accuracy and demonstrate,based on an actual CPU time comparison,that it can therefore perform iterations faster than the second method.We then consider the respective symmetry relations of the non-diagonal and diagonal translators and discuss a memory-reduction procedure for both FFT-based methods.In this procedure,we need to store only the minimum sets of near-field and far-field translation operators and generate missing elements on the fly using the symmetry relations.We show that the relative cost of generating the missing elements becomes smaller as the number of scatterers increases.

关 键 词:Multiple scattering iterative method FFT symmetry 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象