A Robust WENO Type Finite Volume Solver for Steady Euler Equations on Unstructured Grids  

在线阅读下载全文

作  者:Guanghui Hu Ruo Li Tao Tang 

机构地区:[1]Department of Mathematics,Michigan State University,East Lansing,MI 48824,USA [2]Department of Mathematics,Hong Kong Baptist University,Kowloon Tong,Hong Kong [3]CAPT,LMAM&School of Mathematical Sciences,Peking University,Beijing 100871,China

出  处:《Communications in Computational Physics》2011年第3期627-648,共22页计算物理通讯(英文)

基  金:The research of Hu is supported by a studentship from Hong Kong Baptist University;The research of Li was supported in part by the National Basic Research Program of China under the grant 2005CB321701;the National Science Foundation of China under the grant 10731060;The research of Tang was supported in part by Hong Kong Research Grants Council and the FRG grants of Hong Kong Baptist University.

摘  要:A recent work of Li et al.[Numer.Math.Theor.Meth.Appl.,1(2008),pp.92-112]proposed a finite volume solver to solve 2D steady Euler equations.Although the Venkatakrishnan limiter is used to prevent the non-physical oscillations nearby the shock region,the overshoot or undershoot phenomenon can still be observed.Moreover,the numerical accuracy is degraded by using Venkatakrishnan limiter.To fix the problems,in this paper the WENO type reconstruction is employed to gain both the accurate approximations in smooth region and non-oscillatory sharp profiles near the shock discontinuity.The numerical experiments will demonstrate the efficiency and robustness of the proposed numerical strategy.

关 键 词:Steady Euler equations finite volume method WENO reconstruction geometrical multigrid Block LU-SGS 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象