Velocity-Based Moving Mesh Methods for Nonlinear Partial Differential Equations  

在线阅读下载全文

作  者:M.J.Baines M.E.Hubbard P.K.Jimack 

机构地区:[1]Department of Mathematics,The University of Reading,RG66AX,UK. [2]School of Computing,University of Leeds,LS29JT,UK

出  处:《Communications in Computational Physics》2011年第8期509-576,共68页计算物理通讯(英文)

摘  要:This article describes a number of velocity-based moving mesh numerical methods for multidimensional nonlinear time-dependent partial differential equations(PDEs).It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation.Finite element algorithms are derived for both mass-conserving and non mass-conserving problems,and results shown for a number of multidimensional nonlinear test problems,including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem.Further applications and extensions are referenced.

关 键 词:Time-dependent nonlinear diffusion moving boundaries finite element method Lagrangian meshes conservation of mass 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象