检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ee Han Jiequan Li Huazhong Tang
机构地区:[1]IAN,Department of Mathematics,Magdeburg University,D-39106,Germany [2]School of Mathematical Science,Beijing Normal University,Beijing 100875,China [3]CAPT and LMAM,School of Mathematical Sciences,Peking University,Beijing 100871,China
出 处:《Communications in Computational Physics》2011年第8期577-606,共30页计算物理通讯(英文)
基 金:supported by the Key Program from Beijing Educational Commission(KZ200910028002);PHR(IHLB)and NSFC(10971142,11031001);supported by the National Basic Research Program under the Grant 2005CB321703;the National Natural Science Foundation of China(No.10925101,10828101);the Program for New Century Excellent Talents in University(NCET-07-0022);the Doctoral Program of Education Ministry of China(No.20070001036).
摘 要:The adaptive generalized Riemann problem(GRP)scheme for 2-D compressible fluid flows has been proposed in[J.Comput.Phys.,229(2010),1448–1466]and it displays the capability in overcoming difficulties such as the start-up error for a single shock,and the numerical instability of the almost stationary shock.In this paper,we will provide the accuracy study and particularly show the performance in simulating 2-D complex wave configurations formulated with the 2-D Riemann problems for compressible Euler equations.For this purpose,we will first review the GRP scheme briefly when combined with the adaptive moving mesh technique and consider the accuracy of the adaptive GRP scheme via the comparison with the explicit formulae of analytic solutions of planar rarefaction waves,planar shock waves,the collapse problem of a wedge-shaped dam and the spiral formation problem.Then we simulate the full set of wave configurations in the 2-D four-wave Riemann problems for compressible Euler equations[SIAM J.Math.Anal.,21(1990),593–630],including the interactions of strong shocks(shock reflections),vortex-vortex and shock-vortex etc.This study combines the theoretical results with the numerical simulations,and thus demonstrates what Ami Harten observed"for computational scientists there are two kinds of truth:the truth that you prove,and the truth you see when you compute"[J.Sci.Comput.,31(2007),185–193].
关 键 词:Adaptive GRP scheme 2-D Riemann problems collapse of a wedge-shaped dam spiral formation shock reflections vortex-shock interaction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.81.94